
TH-15-8 1 
 

 
 

 

 

 
Kochi Chapter 

Indian Geotechnical Conference 

IGC 2022 

15th – 17th December, 2022, Kochi 

 

Prediction of Hydraulic Conductivity Function 

Parameters of Slurries Using Hybrid Metaheuristics 

Approach 

 
Akhila Vasudev1 and Tadikonda Venkata Bharat2 

 
1 Research Scholar, Research Scholar, Department of Civil Engineering, Indian Institute of 

Technology, Guwahati, Assam-781039, akhila18@iitg.ac.in 
2 Professor, Department of Civil Engineering, Indian Institute of Technology, Guwahati, 

Assam-781039, tvb@iitg.ac.in 

 

 

Abstract. The self-weight consolidation behavior of slurries like dredged clay 

and mine tailings is governed by the finite-strain consolidation theory. This the- 

ory considers the hydraulic conductivity and compressibility of slurries as func- 

tions of the void ratio. The determination of these material functions is essential 

for understanding the settlement behavior of the concerned materials which is 

necessary for the safe and efficient disposal of these materials. The experimental 

procedures for the determination of these functional relations need elaborate set- 

ups and are time-consuming. Therefore, it is convenient to adopt methods based 

on numerical techniques for this purpose. In this paper, an inverse analysis 

method is proposed for the estimation of hydraulic conductivity function param- 

eters from the settlement versus time behavior and initial conditions of slurry 

materials obtained from the settling column test. The finite difference solution of 

the governing equation for finite-strain consolidation was used for the forward 

analysis. The inverse analysis was carried out using Particle Swarm Optimization 

(PSO) algorithm combined with a gradient-based optimization algorithm fmin- 

con. The method was tested using the synthetic settlement response of two slur- 

ries. The shortcomings of fmincon and PSO algorithms were discussed. The pro- 

posed method of back analysis estimated the hydraulic conductivity function pa- 

rameters accurately when the compressibility function is known and is assumed 

to be time-invariant. 

 
Keywords: Hydraulic conductivity, finite-strain consolidation, Particle swarm 

optimization, 

 

1 Introduction 
 

The land is an exhaustible natural resource in huge demand and is depleting at a very 

fast rate all around the globe. Reclamation of lands by backfill using dredged clay 

slurries, for infrastructural development, is a practice observed near water bodies and 

offshore regions [12]. It is important to understand the consolidation behavior of the 

slurry material to ensure the safe construction and utilization of such reclaimed land. 

Global industries are heavily dependent on the extracted mineral resources for their 

functioning. Mining of minerals results in the production of tonnes of waste slurry 

called mine tailings which are stored in huge reservoirs called tailings storage facilities. 
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Such reservoirs hold on to a tremendous amount of water and land at the same time 

[10]. The most accurate method for estimating the speed of consolidation and the 

ultimate height of the waste deposits in these facilities has therefore been the subject of 

considerable research. Deposited slurries undergo very slow settlement under self- 

weight which may take years to complete. The self-weight consolidation behavior of 

slurries is governed by the finite strain consolidation theory [6]. The theory considers 

hydraulic conductivity and compressibility as functions of the void ratio. 

These constitutive functions have a significant influence on the settlement behavior 

of soft deposits [3],[13]. Determination of hydraulic conductivity function from 

laboratory experiments such as large strain consolidation tests, seepage-induced 

consolidation tests, etc is tedious. The settlement of interface in a settling column test, 

on the other hand, is the simplest and most direct data that can be obtained from 

experiments on the slurries. Due to the high dependency of consolidation settlement 

values on the constitutive relationships, is possible to back-predict these functional 

parameters from the settlement data using the concepts of large strain consolidation 

[3],[13]. The parameters thus predicted can help in understanding the consolidation 

behavior of the corresponding slurries in the storage facility or land reclamation sites. 

Such back prediction process has two components, a forward analysis method using 

the relationships governing the large strain consolidation and an effective parameter- 

search method to reduce the errors between numerical predictions and the available 

experimental results. Optimization algorithms such as the Nelder-Mead simplex 

algorithm [13], Particle Swarm Optimisation (PSO) [4],[3], Genetic Algorithm (GA) 

[9] gradient based algorithms [1], etc are generally used for inverse analysis problems. 

The swarm intelligence-based methods are effective in exploration within a domain but 

tend to converge prematurely [2]. The gradient-based methods are fast but need proper 

initial values to converge to the correct optimal solution [4]. A hybrid optimization 

technique that can combine the speed gradient-based method and exploration 

capabilities of swarm intelligence-based methods can effectively overcome the 

disadvantages of these methods and reduce the computational expense. 

This study focuses on back-predicting the hydraulic conductivity function 

parameters from the settlement behavior of slurries when the compressibility function 

for the slurry is known and is assumed to be time-invariant. A Hybridized Particle 

Swarm Optimisation (HPSO) algorithm, combining the conventional PSO algorithm 

with the gradient-based method fmincon (constrained non-linear optimization 

technique), was used for the inverse analysis, in MATLAB. The forward analysis was 

carried out using the finite difference method. The inverse analysis method was tested 

on two synthetic settlement data cases. The data was also used to discuss about the 

disadvantages of using PSO and fmincon. An appreciable match was observed between 

the optimized parameter values and the actual values when HPSO was used. The 

settlement curves simulated using the precited parameters were observed to match well 

with the simulated synthetic settlement behavior. 

 

2 Materials and Input Data 
 

Self-weight consolidation behaviors of two slurries were considered in this study. 

The settlement versus time data along with material properties such as specific gravity, 

initial void ratio, depth of the sample, and compressibility function parameters of these 

materials are given in table 1. 
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Table 1. Relevant input properties of slurries 

 

 

Material 

 

 
Depth 

(m) 

 

 
Specific 

gravity 

 

Initial 
Void 

Ratio 

Compressibility 

Function 

𝑒 = 𝐴(𝜎′ + 𝐵)𝑐 

Hydraulic 

Conductivity 

Function* 

𝑘 = 𝑀𝑒𝑃 
   

A 

(1/kPa) 

B 

(kPa) 

 

M 

(m/s) 

 

    C P 

MFT 5 0.30 2.65 6.00 3.27 0.07 -0.19 2.50x10-11 3.39 

Rutgers 0.50 2.58 4.89 2.86 0.13 -0.21 2.00x10-11 6.00 

* Fitted function is taken from literature [14],[7]      

 

The inverse analysis technique using the HPSO algorithm was tested on two 

synthetic data sets. Properties from the literature for Matured fine tailings of oil sands 

(MFT 5) and dredged clay sediment (Rutgers) were used for the same. In the literature, 

the constitutive relationships for MFT 5 [14], and Rutgers [7] were obtained by con- 

ducting seepage-induced consolidation tests. For these two materials, the synthetic tem- 

poral settlement behaviors were simulated using the finite difference solution of the 

LSC governing equation. A maximum of 5%white noise was added to this numerically 

simulated settlement data so that the data can represent the experimental data. for using 

the input properties given in Table 1. 

 

3 Forward Analysis using Finite Difference Method 
 

The large strain consolidation (LSC) theory [6] overcomes the limitations of Ter- 

zaghi’s one-dimensional consolidation theory by considering hydraulic conductivity 

and compressibility as functions of the void ratio. The relative motion of the solid and 

fluid phases was incorporated in Darcy–Gersevanov’s relationship for flow through 

porous media to incorporate the self-weight factor. The differential equation governing 

the finite strain consolidation of slurries is given as 

 
𝘍 

(
𝜌𝑠  − 1) 

𝑑    𝑘(𝑒)
] 
𝜕𝑒 

+ 
𝜕  

[   
𝑘(𝑒)      𝑑𝜎  (𝑒) 𝜕𝑒

] + 
𝜕𝑒 

= 0 [ 
𝜌𝑓 𝑑𝑒   1+𝑒   𝜕𝑧 𝜕𝑧   𝜌𝑓(1+𝑒 ) 𝑑𝑒     𝜕𝑧 𝜕𝑡 

(1) 

where 𝜌𝑠 is the density of solids in the slurry, 𝜌𝑓 is the density of the pore fluid, e is 

the void ratio, 𝑘(𝑒) is the hydraulic conductivity function and 𝜎′(𝑒) is the compress- 

ibility function. The equation (1) was derived using the material coordinate system [11] 

to account for the moving solid-fluid interface. z is the volume of solids in unit cross- 
sectional area between the point considered and the datum plane. Cargill [5] developed 

the finite difference solution for the LSC governing equation as given below. 

 

{(γ - γ ) β(e ) + 
α(ei+1,j-1) - α(ei-1,j-1)     ei+1,j-1 - ei-1,j-1    

+
 } 

e   = e -
 τ    

[ 
s w i,j-1 2 δ 2 δ 

] 
i,j i,j-1 γw α(e )   

ei+1,j-1 - 2 ei,j-1 + ei-1,j-1 

i,j-1  { 
δ2 } 

 
(2) 

where τ is the time-step, δ is the space-step in the reduced/material coordinate sys- 

tem, γw is the unit weight of water and γs is the unit weight of solids. The terms α and β 

are short-forms expanded as given in Equations (3) and (4). 
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α(e) = 
k(e)    dσ' 

1 + e   de 
(3) 

β(e) = d [ 
k(e) 

] 
de 1 + e 

(4) 

From the finite difference solution, the void ratio distribution within the slurry can 

be derived at any point in time. The settlement at the corresponding time can be com- 

puted using the void ratio profile using the equation 

𝑆(𝑧, 𝑡) = ∫
𝑧
[1 + 𝑒(𝑧, 0)]𝑑𝑧 − ∫

𝑧
[1 + 𝑒(𝑧, 𝑡)]𝑑𝑧 

0 0 (5) 

where S is the settlement, z is the depth of location in the material coordinate system 

and t is the time of settlement. The settlement versus time curves for the process of self- 

weight consolidation of slurries were numerically simulated using equation (5) during 

the inverse analysis using a MATLAB code. The input data required for the forward 

analysis include the specific gravity of solids, the initial void ratio distribution (assumed 

to be uniform throughout the depth), the initial height of the sample, the time of 

consolidation, the spacing of time and space meshes, the compressibility function, and 

the permeability function. For this study, a single drainage condition with free drainage 

at the top of the sample was taken into consideration. While setting the space step and 

time step values, the stability and convergence conditions for the numerical method 

was taken into due consideration. This ensures that the error due to truncation does not 

get magnified over successive steps. 

 

4 Inverse Analysis using Slurry Settlement Data 
 

Qi and Simms [13] observed that constant parameters of the hydraulic conductivity 

in the power influenced the shape and spread of the settlement versus time plots of large 

strain consolidation of slurries. The final settlement value is generally observed to be 

influenced by the compressibility function. Therefore, it is logical to back-predict these 

functions from the observed settlement behavior of slurries. The compressibility and 

hydraulic conductivity relationships were expressed as modified power and power form 

representations respectively as given by 
 

𝑒 = 𝐴(𝜎′ + 𝐵)𝑐 (6) 

𝑘 = 𝑀𝑒𝑃 (7) 

Where A, B, C, M, and P are constant parameters. The inverse analysis for hydraulic 

conductivity function was initiated using the input data such as observed settlement 

versus time data from laboratory or field tests, time step value, space step value, specific 

gravity of the slurry solids, the compressibility function parameters, depth of sample 

and the initial void ratio distribution data. The function parameters M and P were 

predicted from these input data using the optimization algorithm. 

The steps of inverse analysis can be explained as follows. The optimization 

algorithm considers the M and P as the variables to be optimized. Within prescribed 

bounds/domain, the algorithm generated random values and used these as inputs for the 

forward analysis algorithm. The forward analysis algorithm generated settlement 

versus time curves using these input parameters. The optimization algorithm works by 

comparing the settlement values generated using forward analysis and the settlement 

data given as input, to minimize the objective function, given as 
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𝑂 = √(
1 

) ∑𝑁   (𝑆𝑖 − 𝑆𝑖 )
2

 

𝑁 𝑗=1     𝑜 𝑝 
(8) 

where So is the settlement value observed (input data) and Sp is the settlement value 

obtained from the forward analysis, corresponding to the t th time point, for a set of data 

having N points. The objective function calculates the root mean square error (RMSE) 

between the predicted and observed settlement curves. The termination condition for 

the algorithm was the number of iterations. The optimization code was run three times 

to check the robustness of the algorithm. 

 
5 Hybrid Particle Swarm Optimisation (HPSO) Algorithm 

 
Particle swarm optimization (PSO) is an evolutionary algorithm that emulates the 

behavior of a group of animals such as a flock of birds or a school of fishes. It is a 

stochastic optimization strategy based on population introduced by Kennedy and 

Eberheart [8]. The algorithm initializes a population of particles randomly, within a 

prescribed domain or search space. Each of the particles has individual properties of 

position, velocity, and fitness. The position is the value of variables to be optimized, 

fitness is the value of the objective function at that position. These particles move 

towards the global best (gbest) value of position using the velocity term while keeping 

track of their personal best value (pbest) continuously. According to its own experience 

and the experience of its environment, each particle seeks to enhance its performance, 

by updating its position and velocity. The update equations for the position and velocity 

values for each variable to be optimized are of the following form: 
 

𝑣𝑗(𝑖 + 1) = 𝑤 ∗ 𝑣𝑗(𝑖) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(𝑁) ∗ (𝑝𝑏𝑒𝑠𝑡𝑗(𝑖) − 𝑝𝑗(𝑖)) + 

𝑐2 ∗ 𝑟𝑎𝑛𝑑(𝑁) ∗ (𝑔𝑏𝑒𝑠𝑡 (𝑖) − 𝑝𝑗(𝑖)) 
(9) 

𝑝𝑗(𝑖 + 1) = 𝑝𝑗(𝑖) + 𝑣𝑗(𝑖 + 1) (10) 

where i is the number of the current iteration and j is the particle number, N is the 

number of variables to be optimized, 𝑣𝑗(𝑖 + 1) is the updated velocity value for the 

(i+1)th iteration for the jth particle, w is the inertia weight used to control the influence 
of preceding particle velocities on the optimization process. This weight is damped by 

using a damping coefficient wdamp at the end of each iteration. The value 𝑝𝑗(𝑖) is the 

value of the position of the particle and 𝑝𝑏𝑒𝑠𝑡𝑗(𝑖) is the personal best of the particle till 

the current iteration. 𝑔𝑏𝑒𝑠𝑡 (𝑖) is the global best value of the variable till the current 

iteration. c1 is the personal learning coefficient and c2 is the global learning coefficient. 
These coefficients control the influence of the personal best and global best on the 

optimization process. 𝑝𝑗(𝑖 + 1) is the updated position value for the particle 

considered. 
Fmincon is a gradient-based constrained non-linear optimization algorithm available 

in the optimization toolbox of MATLAB, which can work for unconstrained problems 

as well. It is a fast method to find the minima of an optimization problem when a proper 

initial point can be provided. It can be accessed through function call and run with input 

details such as the initial point and the upper and lower bounds of the variables to be 

optimized, objective function, etc. The default algorithm of optimization is the interior- 

point algorithm. 
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For exploring the domain, stochastic optimization algorithms like the PSO algorithm 

use weighted random searching. Stochastic optimization techniques may explore flat 

areas and break out of local minima by using random searches, but they are 

computationally costly and have slower convergence rates. Deterministic algorithms, 

based on gradients, converge more quickly by determining a desirable search path using 

derivative information, but they tend to become trapped in local minima. Deterministic 

methods also struggle when attempting to minimise functions where the global 

minimum is surrounded by flat areas with little gradient. These methods' capability to 

eventually converge is highly dependent on the starting point. Therefore, a novel 

method called Hybrid Particle Swarm Optimisation (HPSO), combining the exploration 

capability of PSO and the capability of fmincon to converge fast, when a proper initial 

guess was provided, was developed. 

The method runs PSO and fmincon algorithms alternately such that the global 

minimum value from PSO after a fixed number of iterations was considered as the 

initial guess value for running the Fmincon function. The global minimum was further 

updated based on the output after a fixed number of iterations of Fmincon. This reduces 

the computational expense for PSO allowing the algorithm to reach the location of 

optimal values faster, where exploration can be done better. The pseudocode for the 

HPSO algorithm is given below 

 

Begin 

Load data for inverse analysis 

Initialize swarm_size, maxitr, n, m, domain, N, w, wdamp, c1 and c2 

For each particle of the swarm 

Initialize position randomly within the domain 

Initialize velocity as zero 

Evaluate fitness using equation (8) 

Set pbest as the current position 
Set gbest based on values of pbest 

End of for 

Set iteration =0; 

Do 

For iteration <n 

For each particle 

Update velocity using equation (9) 

Update position using equation (10) 

Evaluate fitness for updated positions 

Update pbest 

Update gbest 

End of for 

Update iteration 

Set w=w*wdamp 

End of for 

If iteration + m > maxitr 

m= maxitr - iteration 

End if 

Run Fmincon using the initial value as gbest for m iterations 

Update gbest 
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Update iteration 

While (iteration < maxitr) 

End of begin 

 

6 Results and Discussion 
 

The hydraulic conductivity function parameters of two slurries were predicted using 

the HPSO algorithm. The material properties given in Table 1 were used as input along 

with the settlement data points for the inverse analysis. The settlement versus time data 

for MFT5 and Rutgers were simulated numerically using the input data from Table 1, 

using the forward analysis code. To the settlement values, a random white noise, up to 

a maximum of +/- 5%, was added so that the data is not too smooth and can therefore 

simulate the behaviour of experimental data. This synthetic data was used as input for 

the inverse analysis. 
 

Table 2. P and M values predicted using FMINCON using different initial guesses 

 Initial guess 
   

  Optimized values 
   Case Iterations RMSE 

 P M   P M 

Rutgers 6.66 2.49E-12 25 0.741 6.41 1.51E-13 

 10.00 6.91E-18 38 0.741 6.39 1.64E-13 

 6.25 1.19E-11 10 1.4E07 2.96 7.03E-06 

MFT 5 3.71 1.60E-11 35 0.167 3.55 2.14E-11 

 8.00 5.00E-07 40 1.21E07 3.46 2.89E-06 

 3.33 2.14E-08 88 1.23E07 3.33 3.67E-06 

 

Table 2 shows the M and P values predicted using various initial guess values for 

MFT5 and Rutgers, using fmincon. It was observed that the optimised values were 

heavily dependent on the initial guess supplied. The predictions were well beyond the 

tolerance level, even when the values close to the actual values were used as initial 

guesses. 

The PSO parameter c1 was set to 1.5, c2 was set to 2, inertia weight w was set to 1, 

and damping coefficient wdamp was set as 0.99. The swarm size used was 40. The 

algorithm was run for three runs, for 60 iterations. Figures 1(a) and (b) show the 
robustness issue generally observed when PSO algorithm is used for optimisation. PSO 

was observed to experience premature convergence in the case of MFT5, within the 

first few iterations itself. For the case of Rutgers, two runs converged to a minimum 
however, one failed to reach optima within 60 iterations. The average RMSE for three 

runs was observed to be 0.332 and 0.185 for Rutgers and MFT5 respectively. 
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Figure 1. Iteration versus RMSE plots when PSO was used for optimization for the cases of 

(a) MFT5 (b) Rutgers 
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Figure 2 Comparison of the worst value of hydraulic conductivity function parameters pre- 

dicted using PSO to the relation from corresponding literature of (a) MFT5 (b) Rutgers 

 

Figure 2(a-b) compares the worst values of M and P predicted using PSO for the 

cases of MFT5 and Rutgers. The worst case of Rutgers had the predicted value of P as 

6.585 and M as 6.937x10-12. The same for MFT5 had values of P and M as 3.918 and 

1.147x10-11 respectively. Figures 3(a-b) show the comparison of the settlement curves 

simulated using the worst runs and the actual simulated synthetic data. It was observed 

that the curve simulated varied from the synthetic data points at a few places. The 

maximum error in settlement value predicted is 16.4% of actual/input value at around 

71days for MFT5. The value of the same is 16.6% at 4 days time step for Rutgers. 
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Figure 3. Comparison of settlement curves simulated using worst hydraulic conductivity 

function parameters predicted using PSO and the input settlement data for (a) MFT5 (b) 

Rutgers 

 

The HPSO was developed to overcome the above-discussed shortcomings of 

fmincon and PSO. The PSO parameters were maintained at the values mentioned above. 

The number of iterations using PSO was set to 20 and the same for fmincon was set to 

20 as well. A square domain was used, which was defined individually for each of the 

tested cases. The code was run thrice for each case to check the robustness, for a 

maximum of 100 iterations per run. Appropriate time and space step values for each 

case were given as input for the forward analysis to ensure stability and convergence 

criteria of the numerical technique. 
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Figure 4. Iteration versus RMSE plots using HPSO for the cases of (a) MFT5 and (b) Rutgers 

 
Therefore, the PSO algorithm initialized a random set of a population of 40 particles 

at the beginning of a run and proceeded to optimize for 20 iterations. The global best 

values at the end of 20 PSO iterations were used as the initial guess in the fmincon 

function. The function continued to optimise the objective function for the next 20 

iterations, resulting in a possible change in the global optimum value. The overall 
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number of iterations was 40 at that stage which is less by 60 iterations for a case having 

a maximum number of iterations set at 100. The PSO algorithm then continued its 

search based on the global optimum updated after the fmincon, for another 20 iterations 

after which the cycle continued till the overall iteration number reached the set 

maximum value. 

Figure 4(a-b) shows the RMSE versus iteration number plot for all the cases. It was 

observed that the three runs consecutively resulted in the same or very close objective 

function values and optimal values for M and P for both the cases. In all three runs, the 

RMSE value had reached its minimum within 20 iterations suggesting that the initial 

guess values for M and P provided to fmincon after 20 PSO iterations were appropriate. 

In the first run of, MFT5 and Rutgers, the PSO was able to improve its prediction based 

on the output from fmincon after 40 iterations, as seen in Figures 4(a) and 4(b) 

respectively. All the three runs converged to a common minimum, at 20 iterations 

itself. The issue of robustness and problem of proper initial values for PSO and fmincon 

were overcome successfully by HPSO. 

Table 3. Hydraulic conductivity function parameters predicted using 

  HPSO  

Material Mean RMSE 
Predicted Values 

                                                                                           P  M (m/s)  

MFT5 0.122 3.634 1.62x10-11 

Rutgers 0.259 6.237 1.39x10-11 

 

Figures 5(a) and 5(b) shows the comparison of the predicted M and P parameters 

with the function from the corresponding literature. Table 3 shows the optimal values 

of M and P predicted and the mean value of the objective function from three runs. 
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Figure 5. Comparison of hydraulic conductivity function predicted using HPSO to the relation 

from corresponding literature of (a) MFT5 (b) Rutgers 

 

The predicted function was observed to match well with the actual functions. For the 

MFT 5 and Rutgers, the predicted functions slightly deviated from the actual at 

relatively lower void ratios. This could be because the input settlement data for these 

cases show a larger deviation towards the end of consolidation as shown in Figure 6(a) 

and Figure 6(b). The predicted function was over-predicting the hydraulic conductivity 

 
(b) 

 
Rutgers 

HPSO 

P
er

m
ea

b
il

it
y

 (
k

(e
))

 (
m

/s
) 

P
er

m
ea

b
il

it
y

 (
k

(e
))

 (
m

/s
) 



TH-15-08 11 

 

 

S
et

tl
em

en
t 

(m
) 

 

 

 

in the initial stages of consolidation that is at larger void ratios. The curves passed 

through the data points well for both cases. The maximum error in settlement value is 

2.2% for MFT5 and 4.7% for Rutgers. 
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Figure 6. Comparison of settlement curves simulated using predicted hydraulic conductivity 

function from HPSO to the input settlement data for (a) MFT5 (b) Rutgers 

 

7 Conclusions 
 

Determination of hydraulic conductivity function is a regular process in the 

management of slurried waste materials. Many studies showed that the parameters of 

this constitutive function influenced the settlement behavior of the slurries 

significantly. Therefore it is very important to estimate the parameters accurately to 

ensure the safe and efficient use or disposal of slurries. These parameters can be 

estimated by inverse analysis using an optimization algorithm from the settlement data 

of slurries instead of resorting to time-consuming experimental procedures. 

Conventional algorithms tend to be computationally expensive, heavily dependent on 

the initial guess, or lack the robustness of prediction. The current study proposed a 

hybrid algorithm combining the best capabilities of the PSO algorithm and fmincon 

function in the optimisation toolbox of MATLAB. The study resulted in the following 

conclusions: 

• The hybridization resulted in a better algorithm compared to the conventional 

PSO or fmincon function. 

• The lack of robustness of conventional PSO was reduced and faster 

convergence was ensured by combining it with fmincon. 

• PSO successfully provides an appropriate initial guess value for the fmincon 

function which helps fmincon to establish the best path towards optimal 

values. 

• HPSO was observed to converge faster than PSO to the robust solution. 

Therefore, HPSO has reduced the run-time for inverse analysis. 

• In one of the cases, the M value predicted by the PSO algorithm deviated from 

the real value by an order, although the same value was closer to the actual 

value when predicted using the HPSO algorithm. 
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• The inverse analysis using HPSO successfully predicted the hydraulic 

conductivity parameters from the settlement data when the compressibility 

function was known and was independent of time. 

• The optimal parameter values from HPSO successfully simulated the observed 

settlement behavior of slurries 
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