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Abstract. Conical excavations without support are often made in some field
projects, such as foundations for piers, oil and water tanks, etc. The seismic sta-
bility of these excavations has been given least importance in the research field.
The instability of these unsupported excavations might increase during a seis-
mic event. Hence, a realistic estimation of the seismic stability of unsupported
excavations is a prominent issue, especially for the perpetual purpose. In the
present study, seismic stability number for unsupported excavations has been
proposed using the Finite Element (FE) analyses. Due to symmetry in the ge-
ometry about the vertical axis, axisymmetric FE models have been developed
using OptumG2 software based on the finite element limit analysis approach.
The soil (clay, with isotropic and constant undrained shear strength property)
has been modelled as a perfectly plastic Tresca material following an associated
flow rule. Boundary conditions were considered as per the field conditions and
seismic loads were considered as pseudo-static force applied in terms of hori-
zontal seismic coefficient, αh. Adaptive meshing technique was adopted to pre-
dict the results reasonably closer to exact solutions. The seismic stability of the-
se conical excavations are reported in terms of stability number. Moreover, the
effects of depth of excavation, inclination angle, intensity of seismic loading,
etc. on the seismic stability number are explored in detail. For deeper insights
and influence of various affecting parameters, non-dimensional design charts
are presented. Further, it has been observed that the considered parameters have
significant effects on the seismic stability of conical excavations.
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1 Introduction

Generally, unsupported excavations are found as primary stage in many projects re-
lated to construction of footings, piers, columns, underground water tanks, etc., (as
shown in Fig. 1). For cohesive soils, unsupported open vertical or inclined cut, can be
achieved by excavating from the ground surface to the final depth of these structures,
is still one of the most practical and economical methods for temporary excavations to
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construct the foundations of the structures. To minimize the ground movement, a
temporary retaining wall, such as a braced or cantilever sheet pile wall, is usually
employed for the open excavation of such constructions, but this requires the addi-
tional expense of installing a retaining wall. In the recent years, unsupported excava-
tion problems has gained attention of most of the geotechnical projects due to its prac-
tical importance. A series of detailed investigations has been carried out on assessing
the stability of these unsupported excavations. Evaluating the stability of unsupported
excavation is one of the most important aspect to ensure safety in both short and long
span.

Fig. 1. Unsupported excavation adjacent to an existing building.

Initially, remarkable contributions to estimate the stability of unsupported vertical
circular excavations in both cohesive and cohesive-frictional soils. The most notable
contributions, associated with the stability of vertical circular excavations, have been
made by [1-7]. Based on the limit equilibrium method, the stability of cylindrical
excavations formed in cohesive-frictional soils was examined [2,3]. However, these
solutions were approximate in nature because of an inherent assumption associated
with the geometry of the failure mechanism. With the help of an upper bound rigid
block mechanism, the stability of cylindrical excavations in clays whose shear
strength increases linearly with depth was evaluated [6,8]. These analyses also require
an assumption with reference to the geometry of the collapse mechanism. By using an
elastoplastic finite-element analysis, the stability numbers for a cylindrical excavation
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formed in cohesive-frictional soil was computed [9]. By using an axisymmetric lower
bound limit analysis and three dimensional limit analysis, in conjunction with finite
elements and linear/nonlinear programming, a series of studies are available in the
literature to determine the stability numbers for an unsupported vertical cylindrical
excavation [5,10,1,11,12]. Among these computational studies for cylindrical excava-
tions formed in homogeneous cohesive soils [5,10,11]. On the other hand, an unsup-
ported cylindrical excavation made in cohesive frictional soils was also explored
[1,12]. By using the three-dimensional finite-element limit analysis and nonlinear
programming provided an upper bound solution for this excavation stability problem
[1]. On account of the inherent difficulties involved in carrying out a three-
dimensional analysis [1,13], it remains, however, always a difficult task to obtain the
corresponding three-dimensional solution. Based on an axisymmetric lower bound
formulation, the stability numbers for an unsupported vertical cylindrical excavation
in clays whose undrained shear strength increases linearly with the depth was  ob-
tained [11]. Stability of unsupported axisymmetric excavation has been explored in
the past for homogenous clays using lower bound (LB) and upper bound (UB) anal-
yses by [6] and [10]. Later on, the stability of unsupported vertical excavation was
obtained using LB and UB finite element limit analysis (FELA) considering linearly
increasing cohesion of soil with depth [11,14] and cohesive frictional soils [12,14].
Recently, detailed parametric study using FELA has been carried out to estimate the
stability of unsupported conical excavation in homogeneous and nonhomogeneous
clays [15] and cohesive frictional soils [16]. From existing literature, it has been
found that stability of unsupported conical excavations in clay subjected to seismic
loading is mostly lacking and needs to be studied in detail.

The main objective of the present study is to estimate the seismic stability number,
Nc, of unsupported conical excavations in homogenous clay subjected to seismic load-
ing (in terms of horizontal seismic coefficient, αh) through FELA using 2D axisym-
metric finite element models developed in OptumG2. The parametric study has been
perform by varying dimensions of conical excavation, shear strength parameter and
seismic loading. Based on this study, the design charts are developed to estimate the
seismic stability number, Nc, of unsupported conical excavations.

2 Finite Element Modelling

In geotechnical engineering, limit analysis and FELA have been extensively used in
the past to study various complex stability problems [17,18]. FELA, combination of
limit analysis with finite element discretization, is widely used to bracket the exact
limit load by upper-bound (UB) and lower-bound (LB) solutions of limit analysis
(assuming a rigid-perfectly plastic material with an associated flow rule) for handling
complex problems in geotechnical engineering with irregular geometries, varying soil
properties, loadings and boundary conditions [19,20]. Under plane strain and ax-
isymmetric condition, both LB and UB problems (in OtumG2) are formulated using
second-order cone programming (SOCP) [21,22] to solve geotechnical stability is-
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sues. The details of the numerical formulation of FELA in OptumG2 has been elabo-
rated [23].

The procedure adopted for obtaining the seismic stability number, Nc, of unsup-
ported conical excavations in homogenous clay through FELA using OptumG2 is
summarized below. Taking advantage of axis-symmetry, 2D axisymmetric finite ele-
ment models of the conical excavations for seismic condition has been modelled with
its geometric parameters (excavation height, H, radius of excavation bottom, b, and
slope inclination, β), as represented in Fig. 2. The extents for FE model has been cho-
sen based on sensitivity study so that the failure shear zone does not intersect the right
and bottom boundary, and have insignificant effect on the computed results. Based on
sensitivity study, the optimal sizes of the FE model along horizontal and vertical di-
rections has been limited to 8H and 3H, respectively.

The soil mass as homogeneous clay (with undrained shear strength, Su, and unit
weight, γ) has been modelled as the rigid-perfectly plastic Tresca material with the
associated flow rule. The soil mass has been discretize with 6-noded triangular ele-
ments in UB analysis, where each element (with its own unique nodes) has continu-
ous normal and shear stresses at nodes and stresses jump are allowed across shared
edges of adjacent elements. However, unknown velocity components (with a quadrat-
ic function within the element) are continuous across adjacent elements. In optumG2,
UB problem is formulated as SOCP, which satisfies the kinematically admissible
velocity constraints, generated from velocity boundary conditions and compatibility
equations with associated flow rule on average for 6-noded triangular elements. For
the conical excavation problem, the objective function of UB SOCP corresponds to
the minimization of the soil unit weight.

In case of LB analysis, the soil mass has been discretized into 3-noded triangular
elements. In optumG2, the LB problem is formulated into SOCP satisfying the stati-
cally admissible stress constraints, generated from equilibrium equations at centroid
of each triangular element and along the stress discontinuities, stress boundary condi-
tions with no violation of the yield criterion for all nodes. For the conical excavation
problem, the objective function of LB SOCP corresponds to maximization of soil unit
weight.

As this conical excavation problem is formulated in axis symmetry plane and seis-
mic load (as shown in Fig. 2), applied on the entire soil mass as pseudo-static forces
in terms of horizontal seismic coefficient, αh, is non-axis symmetric. To simulate the
seismic effect, non-axis symmetric load needs to be converted to axis symmetric.
Generally, loading applied to a solid or shell of revolution can be described as the
sum of its series components [24]. Let αh, 3D represent seismic load load in general,
such as normal pressure, line load, or temperature in thermal stress analysis. A Fouri-
er series representation of αh, 3D is presented in Eq. 1 where, αh

c and αh
S are load am-

plitudes that depend on n (but not on θ). Here n is an integer that represents the har-
monic number. Loads described by αh, 3D can be radial, axial, or circumferential.
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By locating the θ = 0 plane appropriately, it often happens that only one of the two
series is needed. Typical problems are solved accurately enough by using only the
first few terms of the load series. When a radial load αh, 3D, partly outward and partly
inward but otherwise uniform, is represented by the sine series. Cosine terms of Eq.1
are not needed (although the loading could be described by cosine terms alone if the θ
= 0 plane were placed 90° to the position shown). A uniformly distributed load, alter-
nately inward and outward, and its representation by a Fourier series (Eq. 2). Thus, by
computing the value of αh in radial, axial or circumferential model the appropriate
value of αh in 3D can be obtained by using Eq. 2:

,3
4

sinh
h D


 


 (2)

Automatic mesh adaptivity was also employed for both lower and upper bound
analyses to determine colse upper and lower bound solutions. Adaptive meshing with
five iterations was used for all the analyses where the number of elements were in-
creased from 7,000 to 10,000 to obtain results closer to exact solutions. Using adap-
tive mesh technique gives the advantage of predicting the failure surface exactly
which is evident through the small element size adjacent to the rupture area and large
elements elsewhere. The seismic stability number, Nc estimated using Eq. 3, is de-
pendent on excavation height, H/b; slope angle, β; and seismic coefficient, αh.

hf( , , )c
u

H HN
S b


   (3)

Fig. 2. Axisymmetric numerical model of unsupported conical excavation.

3 Model Validation and Comparison with Past Studies

The developed model is validated for vertical excavation (β = 90°) subjected to static
loading (αh = 0 g) with both lower [11,12,25,16,7] and upper [6,9,14,16,1] bound
solutions as shown in Fig. 3 (a) and (b) respectively. The developed FE model pre-
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dicts the results closer to the results reported in literature while employing lower
bound solutions. Whereas, when employing upper bound solution the predicted re-
sults are quite far away especially with the results reported based on rigid block
mechanism [6] and elastoplastic FE analysis [9]. Further, in this study the average of
both the upper and lower bound solutions have been used for interpretation in the
following sections.

Fig. 3. Validation of the developed model using (a) LB and (b) UB solutions.

4 Results and Discussion

An extensive numerical study has been performed to obtain the seismic stability
number, Nc for unsupported conical excavations. The results have been presented
for β = 45 - 90°, H/b = 0.5 - 10 and αh = 0 - 0.2g. The variation of Nc with H/b sub-
jected to increasing loading (αh = 0, 0.05, 0.10, 0.15 and 0.20 g) for four different
excavation angles (β = 90°, 75°, 60° and 45°) has been presented in Fig. 4. It is inter-
esting to note that Nc decreases with increase in αh at all excavation angles, but the
decrease is more prominent at lower β values. In all considered cases, Nc increases
with increase in H/b.

The variation of failure surface for vertical (β = 90°) and conical (β = 75°, 60° and
45°) excavations with H/b = 1, 2 and 4 subjected to αh = 0.10 g has been presented in
Fig. 5. With the increase in H/b the soil mass contributing to failure decreases at a
particular value of β. However, this decrease is significant at lower β values (i.e. β =
60° and 45°). For a considered H/b value, with the decrease in β the failure surface
widens leading to increase in the soil mass participation.

0 2 4 6 8 10
3

4

5

6

7

8

9

10

0 2 4 6 8 10
3

4

5

6

7

8

9

10
(b)

N
c

H/b

Present Study
Ukritchon and Keawsawasvong (2018)
Kumar and Chakraborty (2012)
Khatri and Kumar (2010)
Sloan (2005)
Lyamin and Sloan (2002a)

(a)

N
c

H/b

Present Study
Ukritchon and Keawsawasvong (2018)
Kumar et al. (2014)
Lyamin and Sloan (2002b)
Griffiths and Koutsabeloulis (1985)
Britto and Kusakabe (1982)



7

Fig. 4. Variation of Nc with H/b for different αh and (a) β = 90°, (b) β = 75°, (c) β = 60°, and
(d) β = 45°.
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Fig. 5. Variation of failure pattern with H/b subjected to αh = 0.10 g for (a-c) β = 90°, (d-f) β =
75°, (g-i) β = 60° and (j-l) β = 45°.

The variation of Nc with varying αh and H/b (0.5, 1, 2, 4, 6, 8 and 10) for four dif-
ferent excavation angles (β = 90°, 75°, 60° and 45°) has been presented in Fig. 6. It
can be observed that at a particular β, Nc decreases with the increase in αh. This de-
crease in Nc is more rapid at lower excavation angle, β. In all the considered cases, it
has been observed that with the increase in H/b, Nc also increases. However, this in-
crease is insignificant towards higher H/b for lower excavation angle, β (i.e., 60° and
45°).

The variation of failure surface for vertical (β = 90°) and conical (β = 75°, 60° and
45°) excavations with H/b = 2 and subjected to αh = 0, 0.10 and 0.20 g has been pre-
sented in Fig. 7. It can be observed that for a β value, with the increase in seismic load
intensity the soil mass contributing to failure also increases. For a particular αh value,
with the decrease in β the failure surface widens leading to increase in the soil mass
participation.
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In all cases, it is interesting to note that (in Fig. 5 and 7) the failure surface mostly
passes through either toe (for β = 75° and 90°) or base (β = 45° and 60°) of the conical
excavation.

Fig. 6. Variation of Nc for αh for (a) β = 90°, (b) β = 75°, (c) β = 60° and (d) β = 45°.
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Fig. 7. Variation of failure pattern for H/b = 2 with αh (a-c) β = 90°, (d-f) β = 75°, (g-i) β = 60°
and (j-l) β = 45°.

5 Conclusions

A numerical study has been performed to estimate seismic stability number of un-
drained conical excavation subjected to seismic action by employing UB and LB
solutions of FELA. It has been observed that for a particular β, the soil mass contrib-
uting to failure also increases with the increase in seismic load intensity. For a par-
ticular αh value, the failure surface widens leading to increase in soil mass participa-
tion with decrease in β. It has also been found that, the failure surface for steep cut (β
= 75° and 90°) passes through toe of conical excavation. However, in case of less
steep cut (β = 45° and 60°) failure surface always passes through base of conical ex-
cavation.



11

It has been observed that Nc decreases with increase in αh at all β, but the decrease
is more prominent at lower β values. In all considered cases, it has been observed that
with the increase in H/b, Nc also increases. However, this increase is insignificant
towards higher H/b for lower excavation angle, β (i.e., 60° and 45°).
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