
An Autonomous Program for Crack Length Calculation
In An Unsaturated Soil In 1-D Column

Anangsha Alammyan1[0000-0003-0649-2950], Sai Krishna Kothapalli1[0000-0002-5820-9427] and
Sreedeep S1[0000-0003-2566-6901]

1 Indian Institute of Technology Guwahati, Guwahati- 781039, Assam, India
anangsha.nits@gmail.com, kothapalli@iitg.ac.in, srees@iitg.ac.in

Abstract. Cracks are widely present in natural and engineered soils. Their presence has the
potential to significantly alter both hydraulic and mechanical properties of soil, thereby causing
the performance to weaken with respect to different engineering disciplines, particularly ge-
otechnical, environmental and geological engineering. This makes the quantification and char-
acterization of cracks important, which would lead to a better understanding about their extent
and complexity in soil under various conditions of seasonal rainfall changes. The length of
individual cracks has been studied in literature to determine the smallest volume with respect to
which an averaging of a certain property of the cracked soil can be performed. In this regard,
the analysis of images has been instrumental in crack length quantification. However, the cur-
rently-used software-based methods involving manual adjustment through visual inspection of
the cracks in 2-dimesional surface images is a time-consuming task that lacks accuracy, sensi-
tivity and reproducibility. There is, hence, the need to develop automated imaging techniques
for analyzing crack length in drying soils rather than relying on software-based methods. The
main objective of this study is to introduce a novel image analysis tool that employs an open
source computer vision library coded in Python to effectively characterize crack length in soils.
A simple experimental set-up was developed using a 1-dimensional column containing com-
pacted red soil in an environment-controlled chamber. A series of images of soil sample was
captured using commercially available camera model (Canon EOS 700D) to have a photo-
graphic time-lapse representation of the cracking process. A step-by-step strategy using a Py-
thon script is presented here to outline an approach to divide the circular 2-dimensional image
into equal radial slices and calculate the crack length in each slice. The approach can be further
extended to calculate other crack parameters sector-wise in a circular image.
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1 Introduction

Upon drying, shrinkage might occur in soils due to loss of water by evaporation. A
desiccation crack generally appears in soil when the volumetric shrinkage is con-
strained or when the induced surface tensile stress becomes equal to the soil tensile
strength [1]. The presence of desiccation cracks in soil can fundamentally modify
both its hydraulic and mechanical properties, thereby causing a weakened perfor-
mance of soil. The stability of geotechnical structures that have been constructed on
clayey soils is significantly affected directly or indirectly by the presence of desicca-
tion cracks in the soil matrix. Study of desiccation crack is important while consider-
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ing urban green infrastructure like terrace gardens, bare soil infrastructure like em-
bankments, bio-engineered slopes and agricultural field.

Several field and laboratory studies have been carried out for the characterization
of desiccation cracks in soils using variety of approaches like manual measurement
[2], X-Ray computerized tomography [3], electrical resistivity tomography [4], and
numerical simulation [5] among many others. The analysis of digital images of the
soil surface has been extensively used to get an idea of the two-dimensional crack
characteristics of soil [6,7]. As distribution and extent of crack network affect water
storage and movement, it is important to measure the crack size and pattern. The de-
termination of crack geometry is also important in characterizing the diverse phenom-
ena associated with cracked soils. Studies have stressed on the need for an accurate
description of spatial characteristics of joint systems and desiccation cracks [8].
Knowledge of the spatial characteristics of cracks is helpful in environmental applica-
tions to accurately model dispersion of contaminants and porous flow. In previously
conducted laboratory studies, a commonly used parameter called the crack length
density (CLD) has been defined as the total length of the crack skeleton in a soil mass.
The calculation of crack length density involves computation by accumulating pixel
lengths between two adjacent skeletal pixels. It has been studied to determine the
crack geometry [9,10] and to characterize the smallest volume for which a specific
property of the cracked soil can be averaged over [11].

In previous studies, the computation of crack length was done by mapping the en-
tire soil area using AutoCAD and calculating the lengths of individual cracks by ap-
proximating them as straight lines [9,11]. There appears to be a lack of automation in
the reported studies. In addition, a significant amount of computational time and hu-
man effort need to be spent in analyzing each image separately. This has significant
impact in case of studies covering large areas which generate several photographs for
which the CLD has to be determined. Moreover, the chances of reproducibility in the
results from manual processing is less because of the effect of observer-dependent
subjectivity. The main objective of the present study is to develop a program to auto-
mate the calculation of CLD of surface cracks in unsaturated soil in a one-
dimensional (1-D) column. It aims to overcome the shortcomings of the existing
methods of determination of the CLD by using a program coded in Python language.
The Python code analyzes 2-dimensional photographs of cracked soil samples and
gives the output in the form of a binary image showing the crack skeleton, from
which the CLD can be determined. It is an effective image analysis technique valid
for all types of soils tested in the laboratory using test pots of any size.

2 Methodology

2.1 Test plan, setup and instrumentation

Soil properties. The tested soil was collected from a hill site in Guwahati, India. The
index properties of the soil were determined following the standard procedures given
by ASTM [12,13,14]. The sand, silt and clay contents were determined to be 26%,
50% and 24%, respectively. Liquid and plastic limit were found to be 42% and 24%,
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respectively. According to the unified soil classification system (USCS), the soil was
classified as inorganic silt of low plasticity (ML). The maximum dry density (MDD)
was determined to be 1690 kg/m3 with corresponding optimum moisture content
(OMC) of 17%. The other index properties of the tested soil are listed in Table 1.

Table 1. Index properties of the tested soil.

Index properties Value
Specific gravity 2.58

Particle-size distribution (%)
Coarse sand (4.75 mm–2 mm) 0
Medium sand (2 mm–0.425 mm) 7
Fine sand (0.425 mm–0.075 mm) 19
Silt (0.075 mm–0.002 mm) 50
Clay (<0.002 mm) 24
Specific gravity 2.58

Atterberg limit (%)
Plastic limit 24
Liquid limit 42
Plasticity index 18
Shrinkage index 21.3

Standard compaction tests
Maximum dry density (kg/m3) 1690
Optimum moisture content (%) 17

Sample preparation and testing procedures. The soil was first oven-dried. The soil
samples were placed in a Poly Vinyl Chloride (PVC) column with a height of 250 mm
and an inner diameter of 300 mm. The soil column was placed on a perforated base
plate, over which a filter paper was placed. This was done to prevent loss of soil par-
ticles with seeping water. All the soil samples were compacted statically to 0.9 Max-
imum dry density (MDD), which is commonly used in embankment soil [15]. A thin
layer of lubricant was applied on the inner surfaces of the column before compaction
to reduce the soil-PVC interface friction. The compaction procedure was divided into
three layers, each having an equal thickness to achieve uniform soil density. Three
replicates (in three separate molds) were prepared to carry out the time-lapse study.
The surface of the sample was leveled using a straight edge to get a uniform surface.
This procedure was repeated for all the specimens. After compaction, the entire col-
umn was placed inside a temperature and relative humidity (RH) controlled chamber
where the temperature (25 ±2 0C) and RH (40 ±5 %) were controlled to minimize
extreme environment variations. Ultraviolet lighting was turned on to simulate natural
lighting conditions. This is shown in Fig. 1. During the process, the soil samples were
monitored continuously for a period of 28 days.
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Monitoring of cracks. During the experiment, continuous monitoring was done using
a high-resolution digital still camera placed straight above the sample. The images
were taken with a digital camera Canon EOS 700D with an exposure time of 1/50
second, ISO speed 160 and 39mm focal length of lens. To get undistorted images di-
rectly above the testing specimen, the camera was placed on an adjustable steel mount
above the sample. During the duration of the experiment, the camera settings re-
mained fixed. The surface size of the three specimens used for the purpose of image
analysis was taken as to be of diameter 300mm in accordance to a scale-effect study
carried out to find the representative elementary volume [11].

Fig. 1. Test set-up for monitoring crack initiation and propagation by image analysis

2.2 Image Analysis.

Image analysis is a simple non-invasive technique of analyzing digital images of
cracked soil surface for the characterization and quantification of desiccation cracks.
The developed cracks have a distinct color which is significantly darker than the soil
matrix. This assists in the identification of crack pixels and their distinction from the
intact soil area. The present study puts forward a novel approach for measuring the
lengths of all surface cracks in a cylindrical soil sample by analyzing the digital
cracks using a script coded in Python. The thresholding is done with the aid of a novel
image analysis algorithm using a step-by-step strategy with a script coded in Python
[16]. The first step is the conversion of the original RGB image to greyscale which
effectively removes all color information while retaining information on light intensi-
ty. The applied method employs the BGR2GRAY command in Python that converts
the RGB image to grayscale. The second step uses a smoothing operation to blur out
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the surface irregularities. This is done by applying a bilateral filter, which removes
irregularities without blurring out the crack edges. The next step is thresholding the
original image to form a binary image where the crack skeleton appears in black and
the soil matrix appears white. This is done using the Gaussian adaptive thresholding
method. In this step, each pixel in the greyscale image is replaced with a black pixel
if the image intensity is less than a threshold value, and it is replaced with a white
pixel if the image intensity is greater than that particular threshold. The value of the
threshold for a particular pixel is automatically selected depending upon the light in-
tensity of the surrounding pixels.

The thresholded images then are divided into eight equal sectors to find the CLD in
each sector. Summing up, the total crack length in the image can also be found. There
were some challenges faced while developing this algorithm. Each image was clicked
manually, and hence the resulting circular soil sample had varying diameter and dif-
ferent dimension of shadow from the container enclosing it. Because of this, it was
difficult to locate the center of each different circle with a single code for all images.
Keeping the above difficulties in mind, the authors came up with an algorithm where
a sector was created of specified angle of 45º. This individual sector was masked over
the circular thresholded image of the soil sample and then rotated around it. With this
method, the values of crack lengths could be found out sector-wise for the entire im-
age. A Python script was written to incorporate the same. The procedure is explained
in brief in the following steps.

At first, the image is thresholded as per a novel algorithm [16]. Following which, a
sector having an angle of 45º is drawn and masked on the thresholded image of the
cracked soil. The rest of the image is made transparent, so, when the program runs,
the analysis is carried out only on the selected area, which is one sector of 45º. The
total length of the cracks in that particular sector is then measured by counting the
number of black pixels in it. The novel script does this automatically and no human
input is required once the program starts running. After the measurement of crack
length is done in the first sector, the original masked sector is rotated by 45º till the
next portion of the image is covered. This leads to the formation of a second sector in
which measurements can be carried out. The rest of the image including the first sec-
tor is made transparent to ensure that measurements are taken only in the selected
area. After the crack length in the second sector has been calculated, the masked sec-
tor is further rotated by another 45º so that a third sector in the image is selected and
the rest of the image is rendered transparent. After the measurements have been made,
these steps are repeated until the whole image is covered by the masked sector leading
to the original image of the circular soil sample being effectively divided into eight
equal sectors of 45º each. Thus the crack length density for each sector can be found
separately while the rest of the image has been taken out of consideration for calcula-
tion. As a summation of all the above, the total crack length in the image can be
found. An additional parameter called the crack intensity factor (CIF) defined as the
ratio of area of cracks to the total area of soil sample can be determined as the ratio of
black pixels to white pixels in the thresholded image. CIF gives an idea of what per-
centage of the soil surface is cracked. The entire process with the corresponding seg-
ment of code is summarized in Fig. 2.
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Fig. 2. Flowchart outlining the steps involved in splitting the image to sectors and calculating
the crack length density

3 Results and discussion

The scope of this novel approach is limited to the measurement of crack length by
counting the number of dark pixels as the cracks in the thresholded image appear as
dark while the surrounding soil sample appears as white. Further studies can be car-
ried out to use this masking algorithm to divide the circular images of soil samples
into equal sectors and find out other crack parameters in each sector. Previous studies
have been carried out where the entire circle was divided into an orthogonal network
of square grids, along which, the crack parameters are counted [17]. This method of
dividing the image into smaller areas leads to possible errors in estimation of crack
parameters as the periphery of the image is curved and hence is not covered in full
square grids. The Python script presented here for masking the image can be consid-
ered as a suggestion for improvement of this existing method. Dividing the image into
radial slices with an equal angle rather than squares could be a more uniform way of
dividing the image to estimate crack parameters. This could also save computational
time otherwise in accounting for the discrepancies along the circumference of the

Image is thresholded
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circle in case of orthogonal grids. The results from the study calculated using the al-
gorithm is shown in Table 2.

Table 2. Specimen geometry and main results from image analysis

Total
Area
(cm2)

Area of
uncracked
Soil (cm2)

Total
Crack
Area
(cm2)

CIF Crack
Length
Density

(cm)

Crack
length/

unit area
(cm-1)

706.86 537.21 169.65 0.24 122.48 0.173

4 Conclusion

The study presented a simple autonomous program customized for quantifying the
total length of surface cracks in unsaturated soil in a 1-D column. The program effi-
ciency to compute CLD was validated using 1-D column experiments. Though, a
simple program was introduced for quantifying cracks in 1-D column, however, the
same can be easily modified for use in different set ups. The authors would like to
provide copy of the program as open source for allowing users to further modify it.

4.1 Scope for future work. Image analysis has proved to be a powerful tool for the
qualitative and quantitative description of 2D patterns. The experimental set-up and
image analysis described in this paper is part of a long-term project investigating the
cracking patterns of drying soils. Applications of the method described here to study
the fundamentals of soil cracking and changes in suction can be found in related pub-
lications [16]. Research suggests that cracking is a three-dimensional phenomenon
[18] and the 3-dimensional quantification of crack patterns is a much more difficult
task than the 2D process described in the current work. In addition to advanced tech-
niques, the study requires more sophisticated equipment. In essence, the novel method
described here can be considered as a first step toward this ultimate goal of quantifi-
cation of crack networks in the field and in geotechnical projects.
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APPENDIX: Python script for quantifying the CIF.

import numpy as np
import cv2
from matplotlib import pyplot as plt
import sys
from math import pi

if int(len(sys.argv)) < 2:
print ("Usage :python script.py input.png output.png")
sys.exit()
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# Read the Input Image
input_img = cv2.imread(sys.argv[1],cv2.IMREAD_UNCHANGED)
height, width, channels = input_img.shape
#Resizing the Input Image
input_img = cv2.resize(input_img, (700, 700))
#Splitting the channels
(inp_r, inp_g, inp_b, inp_a) = cv2.split(input_img)
#Convert to Grayscale
input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
#Blur it a bit to remove noise
input_img = cv2.bilateralFilter(input_img,5,75,75)
#Threshold the image using adaptive gaussian
in-

put_img=cv2.adaptiveThreshold(input_img,255,cv2.ADAPTIVE_THRESH_GAUSS
IAN_C,cv2.THRESH_BINARY,11,7)

#Find Contours
input_img, contours, hierarchy = cv2.findContours(input_img, cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)
#Draw Contours
input_img = cv2.drawContours(input_img, contours, -1, (0,255,0), 1)
#Adding the Alpha channel back
input_img = cv2.merge((input_img,input_img,input_img,inp_a))
#Save the image
cv2.imwrite(sys.argv[2],input_img)

#Calculating the area PI*radius*radius
total_pixels = 0
for i in range(0, 700):

for j in range(0, 700):
if (input_img[i,j][3] == 255):

total_pixels += 1

#Count black pixel
black_pixels = 0
for i in range(0, 700):

for j in range(0, 700):
if (input_img[i,j][0] == 0 & input_img[i,j][1] == 0 & input_img[i,j][2] == 0):

black_pixels += 1

print ("Total Number Of Pixels: ", total_pixels)
print("Total Black Pixels: ", black_pixels)
print ("CIF:", black_pixels/total_pixels)

#Dividing circle into sectors and calculating CLD
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total_pixel_sector=totalpixels/8
for x in range(0,360,45):

rotate_img=cv2.getRotationMatrix2D((350,350),x,1)
dst=cv2.warpAffine((circle_img,rotate_img,(700,700))
fin_img=cv2.add(input_img,dst)
cv2.imwrite(‘test.png’,fin_img)

black_pixels_sec=0
for i in range(0,700):

for j in range (0,700):
if (fin_img[i,j][0]==0 &  fin_img[i,j][1]==0 & fin_img[I,j][2]==0):

black_pixels_sec += 1
print(“Sector Length”,x, black_pixels_sec,‘\n’)


