
Hyperspectral Image Classification using Semi-
supervised Deep Learning Strategies

Sourish Gunesh Dhekane1, Shivam Tiwari1, and Manan Sharma1

1 Indian Institute of Information Technology Guwahati, India
{sourishdhekane,shivam21ballia,manansharma858}@gmail.com

Abstract Recent development in deep learning (DL) methodologies have
shown promising results on various computer vision tasks including classifica-
tion of hyperspectral data. However, these methodologies are expected to suffer
in the presence of lack of training data, due to complex network architecture
and a large number of parameters. In this paper, various K-means based cluster-
ing techniques are explored to generate pseudo labels to facilitate the training of
deep networks. To tackle the curse of dimensionality, an auto-encoder (AE)
based dimensionality reduction method is employed. Finally, the classification
is done using Convolutional Long Short Term Memory Cells (ConvLSTM)
which outperforms the rest of the deep neural networks used. In addition, an
analysis of the effect of the proposed dimensionality reduction method on clas-
sification accuracy is presented. The efficacy of the proposed approach is
demonstrated on two real-world hyperspectral image data sets namely the
“University of Pavia” (UP) and “Salinas”.

Keywords: Hyperspectral Image Classification, Semi-supervised Learning, Au-
to-encoder, Convolutional Long Short Term Memory Cells.

1 Introduction

A hyperspectral image can be denoted by a three-dimensional tensor (, ,) where
and denote the spatial coordinates and λ denotes the wavelength associated with the
spectral bands. One of the key aspects of hyperspectral images is the presence of these
large number of narrow, contiguous spectral bands [1] containing vast amount of
information. This information can be used in various remote sensing applications like
land cover classification [2], crop protection and analysis [3], and mineral detection
[4]. In most of the applications, the task of classifying pixels of a hyperspectral image
plays a key role. However, there are a number of challenges associated with this task.
One of the biggest challenges is the lack of correctly labeled pixels (ground truth
knowledge), which directly affects the quality of classification maps [5]. Also, the
shortage of labeled pixels results in relatively less amount of training data compared
to the spectral dimensions of the hyperspectral image. This introduces the curse of
dimensionality in this application. Also, it has been observed that for a constant set of
training data, the classification performance increases with increase in distinctive
features (dimensions) until an optimal number is reached [6]. As this optimal number

2

is crossed, the performance of the classifier starts to degrade which is exactly what
happens in case of this problem statement. The spectral dimensions of the hyperspec-
tral image are large in number as well as redundant in nature. Hence, extracting idio-
syncratic features from the raw input data in order to reduce the dimensionality plays
an important role in the classification task.

In recent years, due to the availability of massive amounts of data and the im-
provement in computational resources, deep learning [7] based methodologies are
gaining success in various computer vision applications like image classification [8],
semantic segmentation [9], and estimation in generative models [10]. In the case of
classification of hyperspectral images in a supervised scenario, Roy et al. [11] have
achieved the state-of-the-art results using a Hybrid Spectral Convolutional Neural
Network (HybridSN). However, the same task in a semi-supervised scenario demands
some modifications in the deep learning methodologies due to the aforementioned
challenges. To incorporate these modifications, Liu et al. [12] proposed a semi-
supervised Convolutional Neural Network (CNN) containing skip connection parame-
ters between encoder and decoder layer. On similar grounds, a semi-supervised ladder
network [13] was proposed that jointly optimized a supervised as well as an unsuper-
vised cost. In another work, Pan et al. proposed a Multi-grained Network (MugNet)
[14] based on a multi-grained scanning approach where kernels are generated in a
semi-supervised way. These approaches try to modify either the network architecture
with its associated operations or the optimization problem. However, a relatively sim-
ple approach to deal with the scarcity of labeled samples is to generate pseudo labels
using a clustering approach on the abundant unlabeled data and a few available
ground truth samples [15]. The generated pseudo labels can then be used to train the
deep neural network. Following this approach, a Convolutional Recurrent Neural
Network (CRNN) was used for classification by treating each pixel as a sequence of
spectral dimensions [16]. It used pseudo labels generated by clustering based on Con-
strained Dirichlet Process Mixture Model (C-DPMM) to pre-train the proposed mod-
el. The fine-tuning was done using the limited labeled data. In this work, we further
explore this approach by testing the performance of K-means based clustering algo-
rithms for pseudo label generation. In the case of dimensionality reduction, AE have
demonstrated good performance in encoding the high dimensional redundant input
into a low-dimensional manifold [17]. Although traditional approaches for dimen-
sionality reduction like PCA are good in the removal of correlated features, it is bi-
ased towards features having large variance which leads to incorrect results. Hence, it
is intuitive to check the efficacy of deep AE for this task.

In this paper, we explore the approach of pseudo label generation via different
conventional techniques based on semi-supervised version of K-means clustering
algorithm to facilitate the pre-training of the model. Although CRNN has shown bet-
ter results in this approach [16], recurrent neural networks (RNNs) are known to suf-
fer from the vanishing and exploding gradient problem [18]. Long Short Term
Memory (LSTM) cells overcome this drawback by introducing ‘update, forget, and
output gates’ in the architecture. Hence, we explore Convolutional Long Short Term
Memory Cells (ConvLSTM) in the aforesaid semi-supervised setting. Also, we ex-
plore AE to extract better representations from the raw feature set. Finally, we fine-

3

tune the pre-trained architecture using the limited labeled samples and compare the
performance of our approach with other classifiers in the same setting.

The remaining paper is organized into 4 sections. Section 2 contains the detailed
description of the clustering methods, the dimensionality reduction algorithm, and the
classifier that are chosen to be analyzed in this work. Section 3 contains the descrip-
tion of the proposed methodology. Section 4 covers the description of datasets used,
experimental setups, and the results. Finally, Section 5 provides an analysis of the
obtained results with conclusions and the scope of future work.

2 Related Work

2.1 Clustering Approaches

Clustering is a task of partitioning the given unlabeled data into different groups
(clusters) such that the data samples in the same cluster have relatively high similarity
with each other as compared to data samples from different clusters. Clustering algo-
rithms are unsupervised i.e. information about the class labels cannot be extracted
from the clusters. However, when the label information about a few data samples is
available, it is possible to make an approximation to relate the clusters with class la-
bels [19]. This approach is known as Semi-supervised clustering and the class labels
predicted by this approximation are called Pseudo labels [15]. K-means clustering is
one of the most widely used clustering algorithms in machine learning literature. In
the following sub-sections, we describe the semi-supervised versions of K-means
clustering and its variants: K-median and K-medoid based K-means clustering.

K-means clustering. It is an iterative hard clustering approach which groups the data
into K clusters [20]. As K is a hyper-parameter in this algorithm, the very first step is
to specify the value of K. Then, K number of cluster centers are initialized which are
selected randomly from the set of data points. Next, the distance of every data point
from each cluster center is calculated in terms of a chosen distance metric. The data
points are assigned to that cluster center to which they are the closest. After this pro-
cess is completed, the position of cluster centers is updated by calculating the mean of
the data points assigned to their respective cluster. These steps are carried until con-
vergence where the updates in cluster centers are sufficiently small. In other words,
the K-means clustering algorithm aims to minimize the objective function denoted
in equation (1), where represents assignment of data point to the cluster with
its center located at . = ∑ ∑ − (1)

One way to make a semi-supervised version of this algorithm is to initialize the clus-
ter centers at data samples for which the label information is provided. Suppose there
are number of classes present and the label information about number of randomly
selected data samples per class are provided. Then, K should be set equal to ∗ .

4

After the initialization of ∗ cluster centers, the assignment of data samples to clus-
ter centers and the updation of the cluster centers is carried out as described before.
Finally, each data sample is assigned a pseudo label which is the class label of the
cluster center to which the data sample is assigned. Hence, for each iteration, a unique
pseudo label is assigned to the data samples. The only assumption made in this semi-
supervised version of K-means clustering algorithm is the availability of label infor-
mation of at least one data sample per class. This assumption is reasonable for the
task at hand.

Although K-means clustering is a relatively simple and scalable algorithm that
guarantees convergence, it is affected adversely by the presence of outliers. To avoid
this issue, different variants of K-means clustering, like K-medoid [21] and K-median
[22] clustering, are considered.

K-medoid based K-means clustering (K-med). The main difference between the K-
medoid and K-means clustering algorithm lies in the assignment of cluster centers. In
K-means clustering, the cluster center is not necessarily a data sample. However, K-
medoid clustering imposes an additional condition that the cluster centers can only be
located at data samples. Hence, it is more robust to the presence of outliers. However,
traditional K-medoid clustering algorithm becomes computationally expensive as the
number of data samples increase. This is due to a step in K-medoid clustering algo-
rithm where each medoid is swapped with every non-medoid data sample and the
corresponding cost is calculated. If the cost in the new set of medoids is lesser than
the previous set of medoids, then the new set is used for further iterations. In case of a
large number of data samples, this implementation is infeasible due to a large number
of swapping operations. This issue can be resolved by applying the approach of K-
medoid clustering in K-means clustering. In K-med clustering algorithm, the cluster
center is not updated to the mean of the data samples assigned to a particular cluster.
Instead, it is updated to the data sample which is nearest to this calculated mean. This
solution ensures that the cluster center is always a data sample.

K-median clustering. The K-median clustering algorithm is designed to reduce the
cost associated with clustering which is calculated using the L1 norm. Hence, the
objective function to be minimized for K-median can be written as in equation (2)
where represents assignment of data point to the cluster with its center locat-
ed at . The reduction in the cost of clustering is done by assigning the cluster center
to the median instead of the mean of the data samples belonging to a particular clus-
ter. = ∑ ∑ − (2)

The K-median clustering algorithm does not impose the condition that a cluster center
must be a data sample from the dataset. However, the median is calculated per feature
using L1 distance. Thus, the values of individual dimensions of the cluster center
come from the dataset.

5

2.2 Auto-encoder

Traditional Autoencoder consists of two main components: the Encoder and the De-
coder [23]. The task of the encoder is to map the input feature vector into an interme-
diate hidden representation. When the objective of the AE is to minimize the dimen-
sionality of the data, the number of neurons in the hidden layer is set to be less than
that of the input layer. Hence, the encoder embeds input into a low-dimensional mani-
fold. The task of the decoder is to reconstruct the original input from its low dimen-
sional encoding. The working of AE can be mathematically represented for input as
shown in the set of equations (3) where is the encoded representation obtained by
the set of weights and bias vector and is the reconstructed output features.
Here, denotes the squared loss which is minimized by the AE.= (+)= (+) (3)(,) = ‖ − ‖
In order to obtain a low-dimensional embedding, the number of hidden layer units
should be considerably less than the number of features in the input. Another way to
improve the AE is to introduce sparsity by restricting the number of active neurons in
the hidden layer for any input [24]. This is done by including a penalty term in the
objective function which maintains the value of sparsity parameter. Hence, AE is a
good choice to reduce dimensionality and learn useful representations in the presence
of a large number of redundant features.

2.3 Convolutional Long Short Term Memory Cells (ConvLSTM)

In the literature, the task of hyperspectral image classification has been achieved us-
ing deep neural networks like Convolutional Neural Networks (CNN) [27], Recurrent
Neural Networks (RNNs) [28], Convolutional Recurrent Neural Networks (CRNN)
[16], etc. CNNs are better at extracting the features based on information based on
spatial relations, whereas RNNs are good at predictions on sequential data. Although
it is not directly apparent that hyperspectral data is sequential, due to the high number
of dimensions, a pixel of a hyperspectral image can be viewed as a sequence of spec-
tral dimensions. Hence, RNN can be expected to perform well. However, for better
understanding of the long-range dependencies in sequential data, LSTMs have been
demonstrated to perform better than the RNNs [18]. The LSTM architecture consists
of a memory cell and a number of gates having their own parameters. The input gets
collected to the memory cell in case of activation of the Input Gate. Preservation of
long term context is the key aspect of LSTM. This is achieved by the Forget Gate. In
case of activation of the Forget Gate, the state of the past cell is removed (forgotten).
In this way, only important contexts are preserved. Also, the decision on whether the
cell output will be propagated to the final state is done by the Output Gate. Due to this
architecture, the vanishing/exploding gradient problem is addressed [25].

6

However, due to the use of fully connected layers, spatial information cannot be
encoded in the LSTM framework [26]. Hence, the introduction of convolution layers
instead of fully connected layers in input-to-state and state-to-state transitions in
LSTM can help in the incorporation of information about the spatial relations. The
mathematical representation of ConvLSTM is shown in the set of equations (4). The
memory cell of the LSTM is the space where the information of the current
state is stored. The input gate is represented by in which the information about
the new input is accumulated. The forget gate decides whether the information
about the past state should be forwarded into the upcoming states. The output gate

decides whether the recent output of the is passed to the final state ℎ . It
should be noted that the symbol ∗ represents the convolution operation and the sym-
bol represents the hadamard product.= (∗ + ∗ ℎ + +)= ∗ + ∗ ℎ + += (∗ + ∗ ℎ + +) (4)= + ℎ(∗ + ∗ ℎ +)ℎ = ℎ()
Due to the aforementioned architecture, the ConvLSTM is better at predictions on
sequential data in addition to the consideration of information based on spatial rela-
tions.

3 Proposed Methodology

The proposed semi-supervised deep learning framework consists of 4 steps. The first
step consists of the use of semi-supervised clustering in order to generate pseudo la-
bels. The second step extracts meaningful features and reduces the dimensionality of
the hyperspectral image using AE. In the third step, the pseudo labels and extracted
features are used to pre-train the ConvLSTM. Lastly, the ConvLSTM is fine-tuned
using the same set of labeled samples used for semi-supervised clustering. The struc-
ture of the proposed methodology is shown in Fig. 1.

Fig. 1. The proposed semi-supervised deep learning strategy

7

3.1 Pseudo Label Generation

Pseudo labels are the class labels predicted based on the cluster assignment obtained
by a clustering algorithm along with a small set of labeled data samples. The semi-
supervised versions of K-means, K-med, and K-median clustering algorithm are ex-
plored in this work to generate the pseudo labels. The data samples for which the
label information is available are assigned as the initial cluster centers. This is fol-
lowed by the execution of aforesaid clustering algorithms. Finally, pseudo labels are
assigned as described in Section 2.1.

3.2 Dimensionality Reduction

The set of unlabeled data is used to train the AE in an unsupervised manner. As the
motive behind the use of AE is to reduce the dimensionality, the number of neurons in
the hidden layer is set to be less than that of the number of neurons in the input layer.
Sparsity regularizer is also introduced in the cost function in order to learn a better
encoding. It should be noted that no label information is used in this step i.e. fine-
tuning of AE by stacking a softmax layer is avoided. The quality of extracted features
is measured by using them to train the ConvLSTM along with the generated pseudo
labels. The analysis of information loss due to the reduction of dimensionality is car-
ried out by decreasing the dimensions of the data by approximately 10% of the total
dimensions in a step-wise manner and checking the classification accuracy obtained
against it.

3.3 Pre-training the ConvLSTM

The pseudo labels generated are used to pre-train the ConvLSTM which takes into
input the features extracted by the AE. In this step, it should be noted that the pro-
posed model is trained on the pseudo labels, which might not be fully accurate when
compared with the ground truth. As the training and test data is partitioned randomly,
the training data is more likely to contain some falsely predicted pseudo labels along
with the majority of correctly predicted pseudo labels. To improve the performance of
the classifier in this step, one way is to increase the number of correctly predicted
pseudo labels by improving the accuracy of pseudo label generation. The other way is
to ensure that less number of incorrectly predicted pseudo labels are used for training.
This can be done by introducing a metric of confidence in the pseudo label generation
step. For example, if a data sample P1 is more close to the cluster center to which it is
assigned than another data sample P2 which is assigned to the same cluster center,
then P1 is more likely to be having the class label of that cluster center than that of
P2. Hence P1 should more likely to be included in the training set than P2. Thus P1
has more confidence in the generated pseudo label as compared to P2. If this metric of
confidence is used in the implementation, then the training data is selectively chosen
to consist of data samples with the pseudo labels having relatively high confidence.
Otherwise, train and test data is divided in a random fashion.

8

3.4 Fine Tuning the ConvLSTM

The full utilization of the given labeled data can be achieved by fine-tuning the pre-
trained ConvLSTM with the labeled data. It is expected that the performance of the
classifier should improve with the training on this labeled set. The fine-tuning step
can be done in a number of ways. A set of dense layers can be added to the pre-
trained model followed by a softmax layer as proposed in [16] where the parameters
of the pre-trained model are set to be frozen during the fine-tuning. Hence, only the
parameters corresponding to the newly added dense and softmax layer are changed.
However, we observe that the addition of a large number of dense layers to the pre-
trained model decreases the performance. Hence, we propose to include only a single
dense layer and a softmax layer to the pre-trained model.

4 Experiments and Results

4.1 Datasets

Two real-world hyperspectral image datasets are used to check the performance of the
proposed methodology.

The first dataset used is called the “University of Pavia” (UP) dataset [29]. The da-
taset was captured using Reflective Optics System Imaging Spectrometer (ROSIS)
sensors during a flight campaign over the targeted geographical region. The original
dataset is a 610*340 pixel hyperspectral image. However, many pixels contain no
information. Hence, they are discarded before the analysis. The spatial resolution of
the image is 1.3 meters. It contains 103 spectral dimensions within a narrow wave-
length range of 430-860 nanometers. This dataset consists of 9 different land cover
classes such that the classes are not represented equally i.e. the data set does not have
equal number of data samples in each class. Hence, the issue of class imbalance is
present.
The second dataset used is called “Salinas” dataset [30]. This dataset is captured using
Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) sensors. It is collected
over the Salinas Valley in California. The spatial resolution of this image is 3.7 me-
ters, which is higher as compared to UP dataset. It is a 512*217 pixel image contain-
ing at-sensor radiance data. It consists of 224 spectral dimensions. However, 20 di-
mensions out of the total 224 dimensions are discarded as they correspond to the wa-
ter absorption bands. The ground truth of this dataset contains 16 different classes and
similar to the UP dataset, the classes are not represented equally. Thus, the issue of
class imbalance is present in this dataset also.

4.2 Experimental Setup

In the experiment, the labeled set is constructed by randomly selecting 10, 20, 30, and
40 pixels per class. In the semi-supervised clustering step, K-means, K-mediod, and
K-median clustering algorithms are tested. We define a configuration by the cluster-
ing algorithm and the number of labeled samples used in the semi-supervised cluster-

9

ing. Hence, for 3 different clustering algorithms and 4 settings of the number of la-
beled samples used, there are 12 configurations in total. For each of the configuration,
the same set of 10 / 20 / 30 / 40 labeled samples is used to remove the effect of initial-
ization of cluster centers on the performance of pseudo label generation. The number
of iterations for which the clustering should be conducted is set as a hyper-parameter.
As the proposed methodology requires only an approximation of the class labels in
the form of pseudo labels, the number of iterations is set to be a very small number.
This implies that the clustering is forcefully terminated after a few iterations. This
also helps in achieving less execution time.

To analyze the information loss in the process of feature extraction, the spectral
dimension is reduced in steps of 10% of the total, till it reaches half of the total num-
ber of dimensions. For example, in case of UP dataset, the classification accuracy is
obtained for the feature sets with 93, 83, 73, 63, and 53 dimensions (reduction of 10
dimensions in each step). The total number of dimensions of the UP dataset is 103.
Finally, the effect of dimensionality reduction is analyzed by plotting a graph between
the cardinality of the reduced feature set and the classification accuracy associated
with it. The classification accuracies in this experiment are obtained by using Con-
vLSTM as the classifier over the reduced feature set.

Finally, the performance of the proposed model is compared with 3 different classi-
fiers: CNN, LSTM, and CNN-LSTM. For CNN, the feature vector is passed to 1-
dimensional convolution layer with 64 filters, each having kernel size of 8. Padding is
applied to keep the feature shape unchanged. ReLU activation and a dropout of 0.2 is
used in all neural architectures. Then, a batch normalization layer is applied followed
by a 1-dimensional max pooling layer of stride 2. The training of the architecture is
carried out with ADAM optimizer. The LSTM model is implemented using an LSTM
layer having the number of units equal to the size of input feature vector. Both the
dropout and recurrent dropout are set to 0.2. The training of the architecture is carried
out with ADAM optimizer. In the case of CNN-LSTM, a 1-dimensional convolution
layer having 64 filters of size 8 is used with the ‘SAME’ padding and ReLU activa-
tion. A max pooling layer is attached to it with stride 4. It is followed by an LSTM
layer having number of units equal to the size of the original feature vector. Finally, a
dense layer is applied with a softmax layer attached to it. The model is trained with
“Adam” optimizer. In the implementation of ConvLSTM, instead of passing the 1-
dimensional feature vector for a pixel, a 2-dimensional feature vector is constructed.
To incorporate the spatial information, the spectral dimensions of the neighbor pixels
are concatenated and passed to the 2-dimensional ConvLSTM layer. The output of
this layer is passed to a dense layer attached to a softmax layer. It should be noted that
the number of units in the ConvLSTM layer is set to be equal to the number of spec-
tral features of the input. Each of the classifiers is tested 10 times for each of the
aforesaid 12 configurations. The average of all these results are reported.

4.3 Results

The classification accuracies for the UP and the Salinas dataset are shown in Table.2
and Table.3. The accuracy of the best performing classifier in each configuration is

10

highlighted. The index numbers 1, 2, 3, and 4 represent the classifiers CNN, LSTM,
CNN-LSTM, and ConvLSTM respectively. It can be seen that for a classifier, the
classification accuracy increases with the increase in the number of labeled samples
used per class. Also, the use of K-med and K-median clustering algorithm has shown
better performance on the UP dataset. However, the use of K-means has outperformed
the other two clustering algorithms in case of the Salinas dataset. From the point of
view of the classifiers, ConvLSTM has produced the best results for a majority of the
configurations with a few exceptions, where CNN-LSTM can be seen to outperform
the ConvLSTM. An important observation in this experiment is the improved results
due to the combined use of spatial and sequential information (CNN-LSTM and Con-
vLSTM) as compared to its use separately (CNN and LSTM).

Table 1. Classification accuracies for UP dataset

K-means K-med K-median

No. 10 20 30 40 10 20 30 40 10 20 30 40

1 88.76 89.31 90.03 92.57 90.08 92.31 93.28 94.86 89.93 90.91 92.33 94.30

2 88.12 90.63 91.32 92.08 89.80 90.22 90.87 91.21 88.12 90.97 91.41 92.55

3 90.44 92.12 93.47 94.07 91.32 93.62 93.86 94.01 90.94 93.23 93.84 94.71

4 91.32 93.43 94.01 95.30 92.03 92.77 93.54 95.61 91.83 92.96 94.14 95.42

Table 2. Classification accuracies for Salinas dataset

K-means K-med K-median

No. 10 20 30 40 10 20 30 40 10 20 30 40

1 93.47 94.81 95.84 96.03 93.58 94.27 94.32 94.56 92.34 93.06 93.41 94.66

2 91.82 91.99 92.08 92.25 91.03 91.39 91.68 91.90 90.72 90.95 91.63 92.00

3 93.78 95.91 96.26 96.88 93.08 94.44 95.09 96.13 93.21 93.98 94.91 96.26

4 93.69 95.53 96.44 96.97 93.25 94.29 95.38 96.52 93.14 94.33 95.12 96.05

The classification accuracies obtained on the extracted features are shown in Fig. 2.
The results clearly highlight the fact that the amount of information loss in the feature
extraction is comparatively lesser than that of the reduction in dimensions. This shows
the efficacy of the AE to extract distinguishing features from the large set of raw input
features. Thus, from the mentioned results and the4.4 observations stated above, it can
be clearly seen that the proposed methodology and the choice of classifier outper-
forms other classifiers in the same environment in the majority of configurations.

11

Fig. 2. Classification accuracies using the extracted features

5 Conclusion and Future Work

This paper explores the semi-supervised deep learning based strategies to classify
hyperspectral images. The key aspect of this methodology is the generation of more
accurate pseudo labels via semi-supervised clustering. The highest overall accuracies
of 95.61% and 96.97% are obtained for the UP dataset and Salinas dataset respective-
ly. Also, relatively low information loss is observed which is marked by only 10%
reduction in overall accuracy due to the dimensionality reduction. These two aspects
highlight the effectiveness of the proposed methodology. Apart from these two
measures, the proposed methodology is also computationally efficient due to early
termination of the semi-supervised clustering algorithm. However, this methodology
can be further explored as the pseudo label generation step can be performed by sev-
eral other more efficient clustering algorithms.

Acknowledgments

The authors thank Prof. Paolo Gamba for providing the UP dataset.

References

1. Chang, C. I.: Hyperspectral imaging: techniques for spectral detection and classification
Vol. 1, Springer Science & Business Media. (2003).

2. Xu, B., Gong, P.: Land-use/land-cover classification with multispectral and hyperspectral
EO-1 data. Photogrammetric Engineering & Remote Sensing, 73(8), pp. 955-965. (2007).

3. Mahlein, A. K., Oerke, E. C., Steiner, U., Dehne, H. W.: Recent advances in sensing plant
diseases for precision crop protection. European Journal of Plant Pathology, 133(1), pp.
197-209. (2012).

90% 80% 70% 60% 50%
UP 95.1 92.81 89.77 88.37 84.42
Salinas 93.81 90.02 87.59 86.64 83.82

75
80
85
90
95

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Number of extracted features as compared to the total number of
dimensions present in the dataset

Effect of Dimensionality Reduction

UP

Salinas

12

4. Schmidt, F., Legendre, M., Le Mouëlic, S.: Minerals detection for hyperspectral images
using adapted linear unmixing: LinMin. Icarus, 237, pp. 61-74. (2014).

5. Baraldi, A., Bruzzone, L., Blonda, P.: Quality assessment of classification and cluster
maps without ground truth knowledge. IEEE Transactions on Geoscience and Remote
Sensing, 43(4), pp. 857-873. (2005).

6. Houghes, G. F.: On the mean accuracy of statistical pattern recognition. IEEE Trans. In-
form. Theory, 14(1), pp. 55-63. (1968).

7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning nature, 521(7553), 436 (2015).
8. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolu-

tional neural networks. In: Advances in neural information processing systems, pp. 1097-
1105. (2012).

9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 580-587. (2014).

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Bengio,
Y.: Generative adversarial nets. In Advances in neural information processing systems pp.
2672-2680. (2014).

11. Roy, S. K., Krishna, G., Dubey, S. R., Chaudhuri, B. B.: HybridSN: Exploring 3-D-2-D
CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geoscience and
Remote Sensing Letters (2019).

12. Liu, B., Yu, X., Zhang, P., Tan, X., Yu, A., Xue, Z.: A semi-supervised convolutional neu-
ral network for hyperspectral image classification. Remote Sensing Letters, 8(9), pp. 839-
848. (2017).

13. Büchel, J., Ersoy, O.: Ladder Networks for Semi-Supervised Hyperspectral Image Classi-
fication. arXiv preprint arXiv:1812.01222. (2018).

14. Pan, B., Shi, Z., Xu, X.: MugNet: Deep learning for hyperspectral image classification us-
ing limited samples. ISPRS Journal of Photogrammetry and Remote Sensing, 145, pp.
108-119. (2018).

15. Wu, H., Prasad, S.: Semi-supervised dimensionality reduction of hyperspectral imagery us-
ing pseudo-labels. Pattern Recognition, 74, pp. 212-224. (2018).

16. Wu, H., Prasad, S.: Semi-supervised deep learning using pseudo labels for hyperspectral
image classification. IEEE Transactions on Image Processing, 27(3), pp. 1259-1270.
(2017).

17. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neurocompu-
ting, 184, pp. 232-242. (2016).

18. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural net-
works. In International conference on machine learning, pp. 1310-1318. (2013).

19. Bair, E.: Semi‐supervised clustering methods. Wiley Interdisciplinary Reviews: Compu-
tational Statistics, 5(5), pp. 349-361. (2013)

20. MacQueen, J.: Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability
Vol. 1, No. 14, pp. 281-297. (1967).

21. Kaufman, L., P. J. Rousseeuw, and Y. Dodge.: Clustering by Means of Medoids in Statis-
tical Data Analysis Based on the. pp. 405-416. (1987).

22. Jain, A. K., Dubes, R. C.: Algorithms for clustering data Vol. 6. Englewood Cliffs, NJ:
Prentice hall. (1988).

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press. (2016).
24. Makhzani, A., Frey, B.: K-sparse autoencoders. arXiv preprint arXiv:1312.5663. (2013).

13

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation, 9(8), pp.
1735-1780. (1997).

26. Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., Woo, W. C.: Convolu-
tional LSTM network: A machine learning approach for precipitation nowcasting. In Ad-
vances in neural information processing systems, pp. 802-810. (2015).

27. Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hy-
perspectral image classification. Journal of Sensors, 2015. (2015).

28. Lyu, H., Lu, H., Mou, L.: Learning a transferable change rule from a recurrent neural net-
work for land cover change detection. Remote Sensing, 8(6), 506. (2016).

29. Gamba, P. A collection of data for urban area characterization. In IGARSS 2004. 2004
IEEE International Geoscience and Remote Sensing Symposium (Vol. 1). (2004, Septem-
ber).

30. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

