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Abstract. Tunneling in jointed rock is always a challenge for the engineer on site, due to the 

existence of unfavorable lineages. The presence and orientation of fractures will affect the 

redistribution of stresses and any uncontrolled ground movement will induce additional loads 

on the boundary. Further the complexity arrives when two or more tunnels intersect each other, 

leading to more instability.  Hence, discrete element modelling of Cross-tunnel was carried out 

considering, three tunnel shapes, i.e. D-shape, horseshoe tunnel with flat invert and horseshoe 

tunnel with curved invert. The analysis allowed the computation of the complete stresses and 

deformation patterns around the tunnel excavated in jointed rock conditions, comparing with 

Intact rock/continuum model. In discontinuum model (Jointed rock) model, in the vicinity of 

the openings, the surfaces are very much affected due to occurrence of tensile stresses and also, 

floor heaving and crown displacements were observed to be distinctive.  This effect was rela-

tively reduced for the case of horseshoe shaped tunnel with curved side walls and curved invert 

conditions. 
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1 Introduction 

Tunnelling in jointed rock is always a challenge for the engineer on site, due to the 

existence of unfavourable lineages. Discontinuities that can occur may be fractures, 

fissures, joints, faults, folds, dykes, or bedding planes. The most commonly observed 

discontinuity type in underground excavations is a joint or joint set(s) which can be 

characterized by parameters such as joint set number, joint orientation, joint size, joint 

frequency, joint roughness parameters, joint normal stiffness, joint shear stiffness, and 

joint strength parameters. While these joints have a significant influence on the stabil-

ity of underground and surface excavations, quantitatively observing this influence 

can prove to be complex. On the other hand, as many underground facilities are often 

associated with ramp or shaft system resulting complex geometries. As a result, 

closed form solutions and graphical methods are of limited value in studying the be-

haviour of tunnels in jointed rock conditions. In recent years, numerical methods like 

Boundary Element Methods (BEM), Finite Element Methods (FEM), Finite Differ-

ence methods (FDM) were employed to analyse the complex tunnel geometries. In all 

these methods the rock mass is treated as a continuum and user has to input interface 
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elements that can to some extent enable them to model a jointed rock. Their formula-

tion is usually restricted to small displacements and rotation, and even the logic 

breaks down upon incorporating many interface elements. Also, these continuum 

methods would not allow recognizing new contacts.  Conversion of rock fracture data 

through rock mass classification into rock mass geo-mechanical properties was at-

tempted by few researchers (Hoek et al., 1995, 2002; pine & Harrison, 2003). Manag-

ing the jointing geometry was found to be difficult in this approach though. Lorig and 

Varona (2013) also suggested that continuum methods are appropriate for weak rock 

masses, whereas discontinuum methods are used to model structurally controlled 

instabilities. The difficulties in continuum methods, could be overcome using Discrete 

element method (DEM) introduced by Cundall (1988). In DEM, which finite dis-

placements and rotation of discrete bodies are allowed, including complete detach-

ment and automatic recognition of new joints.  

 

Hajiabdolmajid et al. (2002) applied DEM  for continuum methods for the simulation 

of brittle rock failure including the two-dimensional (2D) finite difference numerical 

analyses with elasto-plastic, elastic-brittle and cohesion-weakening frictional-

strengthening (CWFS) material behavior used for the simulation of v-shaped notch 

failure around the mine by experiment tunnel at the Underground Research Laborato-

ry (URL) in Manitoba, Canada. Lan et al. (2013) attempted for 2D discontinuum 

method for the simulation of hard brittle rock masses using DEM and also captured 

the evolution of in situ rock mass damage and spalling induced by mechanical and 

thermal loading.  A comparison continuum and discontinuum approaches was done 

by Barla and Barla (2000) and they concluded that, 3DEC and other DEM-based 

packages could successfully simulate jointed rock masses accurately and better than 

other methods. Hao and Azzam (2005) and Vardakos et al. (2007) also successfully 

modelled tunnels in different rock types for 2D discontinuum modelling approach, 

using UDEC. Wang et al. (2012) attempted a 3D stress analysis coupled with an 

equivalent continuum analysis, using 3DEC for a mine tunnel in an underground iron 

ore mine. Results were found to correlate well with observed field deformations. The 

stability of a tunnel at a dam site in China was investigated by Wu and Kulatilake 

(2012) using three-dimensional discontinuum and equivalent continuum numerical 

modeling techniques.  The various application of 3D continuum and discontinuum 

methods in underground excavation includes the finite element code, ABAQUS, by 

Lilley et al. (2013), the finite difference code, FLAC3D, by Walton et al. (2016) and 

the 3D DEM code, 3DEC, by Vakili et al. (2013) and Karampinos et al. (2015).  

 

This paper reports on the use of 3DEC for the simulation of the tunnel excavation. 

Cross-tunnel models were developed considering three tunnel shapes. The joints were 

incorporated into the numerical model using Discrete fracture networks (DFNs). The 

focus of the present numerical study is to evaluate the effectiveness of the tunnel ge-

ometry in mitigating the tunnel deformations around the underground excavation.  
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2 Discrete Element modelling  

2.1 Distinct Element Method - 3DEC Formulation 

 

To represent discontinuities, Cundall (1971) formulated a distinct element method 

(DEM) that uses the discontinuous method of analysis. The term ‘Distinct Element 

Method (DEM)’ was introduced by Cundall and Strack (1979) to refer to Discrete 

element scheme that uses deformable contacts and explicit time-domain solution of 

the equations of motion. In the 3DEC, each block considered to be a continuum is 

analyzed using the finite difference method of analysis by constant strain tetrahedrons 

and the corresponding discontinuity using boundary conditions. A step-by-step stress 

relaxation technique is adopted for the 3DEC analysis, which alternates between 

Newton’s equation of motion and stress displacement law. The relaxation process can 

be defined as the cycle of calculations between stress equations and equations of mo-

tion for each time step. The operating cycle primarily depends on the assumption of 

the blocks as rigid or deformable (Figure 1).  

 

For rigid blocks, the force and displacement calculations are performed at the centre 

of the block. The force and displacement are calculated as follows, respectively:  

 

        
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where 
c
iF is the force at the contact interface and m is the mass of the block under 

consideration. In the case of deformable blocks, the analysis is conducted for each 

zone element. Tetrahedron zone elements used in the 3DEC eliminates the error ow-

ing to hourglass deformation. The motion of each vertex of the tetrahedron zone (grid 

point) is calculated by considering a Gaussian surface along the block   
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where s is the surface enclosing the mass, m1 is lumped at the grid point, Fi is the 

resultant of all external forces applied to the grid point (which will be zero for the 

static condition), nj is the unit normal to s, and gi is the acceleration owing to gravity.  

 

The interaction and loading between two adjacent blocks are determined by the 

minimum distance between the adjacent blocks, which is established numerically. The 

contact type, maximum gap, and sliding plane of two joints are determined by a con-

tact detection algorithm. The joint stiffness defined between the blocks in normal and 

tangential directions determines the mechanical calculations performed at the con-
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tacts. The interaction forces developed in the normal and tangential directions (Fn and 

Ft) of the contact points determine the relative displacements that these blocks under-

go (un and ut) and are represented as follows:   

                    nnn uKF                                            (4) 

                      ttt uKF              (No Slip)                      (5) 

  tanFF nt           (Slippage)                (6) 

The contact surfaces may occur as a vertex-to-edge contact or an edge-edge con-

tact. A linear or nonlinear relation can express the slippage between the contact sur-

faces such as the Mohr–Coulomb model, continuously yielding model, or Barton–

Bandis model. The stress displacement relations for a simple Coulomb friction for 

these contacts are established as follows:   

      nnn uk                                           (7) 

                                           ttt uk             (No Slip)                          (8) 

                      tannt           (Slippage)               (9) 

 

where nu  represents the interpenetration of the blocks known as the contact 

overlap between the adjacent blocks in the normal direction. Cohesion is always as-

sumed to be zero when slippage occurs. If the contact overlap exceeds the prescribed 

tolerance limits, the calculations terminate with the contact overlap error.  
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Fig. 1.  Calculation cycle of 3DEC (after Hart, 1993). 

3 Establishment of the Numerical Model 

Model Geometry  

 

The cross-tunnel consists of an access tunnel (AT) that lead to experimental chamber 

(EC). From the experimental chamber, two experimental tunnels (ET-1 and ET-2) of 

each 60m will be excavated perpendicular to the Experimental chamber. The 

experimental chamber is of 25 m x 25 m x 15 m and it is relatively very large 

underground opening as compared to other tunnels which are of usually 6m height. 

The cross-tunnel is assumed to be at a depth of about 120 m from the surface, and the 

model dimensions have been selected to ensure that there is sufficient material around 

the tunnel. This is essential to ensure that the model boundary is farther than the area 

of influence. In the current set-up, a 145 m × 94.5 m × 200 m 3DEC model was 

constructed to simulate a cross-tunnel. Three tunnel geometries with cross sections D-

shaped, Horseshoe tunnel with flat invert and horseshoe with curved invert had been 

considered for the study as shown in figure 2a. 

Continuum and Discontinuum Models 

 

Continuum 3DEC model: The continuum model was divided in to two main domains 

with different mesh sizes to facilitate running a time efficient model. The central re-

gion of the model is of very fine mesh, and is modelled using Hoek-brown material 
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properties, as shown in figure 3a. The edge length of the zones in this domain was 

about 1/70 of the width of the model domain. The rock mass above and below the 

central core region was zoned employing larger mesh elements as compared to the 

smaller domains. 

 

Discontinuum 3DEC model: The constructed discontinuum model was a coupled 

continuum-discontinuum model. The discontinuum domain was a 145 m × 94.5 m × 

80 m block, in which the discontinuous nature of the rock mass was explicitly simu-

lated using three joint sets generated by Discrete fracture networks (figure 2b).  Joints 

are assigned the coulomb slip model and the intact rock between these joint sets form-

ing the rock blocks were assigned elastic properties as presented in table 1. The ge-

ometry and size of the mesh elements, and the joints simulated, are displayed in fig-

ure. 3b.  

 

Input Parameters and Boundary Conditions 

 

The physical and mechanical properties of intact rock and joints used in the model are 

given in Table 2. In each case, prior to cavern excavation, the model was initially consol-

idated under the gravitational stresses. The stresses are assumed to vary linearly with 

depth, and at the level of the top of the tunnel the simulated vertical stress is 3.24 MPa. 

The model is bounded at the base by fixities which prevent vertical movement, and 

stress boundaries have been used along the other five faces, with magnitudes equal to 

the in-situ stresses and gradients along the respective directions. The Discrete fracture 

networks technique was used to incorporate the joints with the joint intensity and size 

as uniformly distributed and varying the joint orientations as tabulated in table 2. 

 

 

Fig. 2. a Dimensions of the tunnel shapes considered (i) D-Shaped tunnel (ii) HS tunnel with 

flat invert and (iii) HS tunnel with curved invert b DFN realization for the three joint sets 

(b) 

(b) 
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Fig. 3. 3DEC model domains: a continuum 3DEC model and b discontinuum 3DEC model 

showing the discontinuum domain with three explicit joint sets 

Verification 

 

To verify the created model and test for consistencies following observations were 

made: The vertical stresses (zz-stress) approached zero on the roof and floor and 

peaks at the walls. horizontal stress (xx stress) approached zero on the walls and 

peaks at the roof and floor. Far field Horizontal and vertical stresses were equal to the 

applied in-situ stress field. This confirmed the model has the right stress fields being 

applied to the established model (Shreedharan & Kulatilake (2016)). 

Table 1. Input parameter values for the simulation of cross-tunnel model. 

 Parameter Value/Type 

Initial Stress condi-

tions 

Ground Surface Elevation (m) 125 

Total Stress Ration (horiz/vet in plane) 1 

 Total Stress Ration (horiz/vet out-of-plane) 1 

 Unit Weight:(MN/m3) 0.027 

   

Rock: Elastic Proper-

ties 

Elastic type Isotropic  

Young’s Modulus (MPa) 45000 

 Poisson’s Ratio 0.18 

   

Strength Parameters Failure Criterion Generalized Hoek-Brown 

 Material Types Elastic  

 Intact Comp. Strength (MPa) 100 

(a) 

(a) 
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 mb Parameter (peak) 1 

 s Parameter (peak) 0.001 

 a Parameter (peak) 0.5 

   

Joint Properties Contact Cohesion (c) 5 MPa 

 Contact Tensile strength (T) 0.5 MPa 

 Contact Normal stiffness (kn) 1.9 x 1012 Pa/m 

 Contact Shear stiffness (ks) 0.8 x 1012 Pa/m 

 Contact Peak friction angle (φ) 20° 

 Contact Residual Friction angle (φr) 15° 

   

 

Table 2. Joint set Orientations 

S. No. 
Joint Dip 

(⁰ )  

Dip Direction 

(⁰ )  

Trace length 

(m) 

1 50 270 12 

2 80 10 9 

3 70 150 10 

 

 

4 Results and Discussion 

Comparing the continuum and discontinuum 3DEC models, it was observed that 

the displacements in the discontinuum model were higher than the continuum model.  

This is expected due to explicit replication of joints in the discontinuum model, which 

allowed for a more realistic simulation of deformations and the interaction between 

rock blocks and joints.  In case of continuum models, the displacement of the model is 

set to 1.35mm as a maximum limit that has been observed in D-shaped tunnel, for an 

easy comparison of the graphical results. From figure 4, continuum models, it can be 

clearly seen that floor heaving is significantly reduced for HS flat and curved invert 

shaped tunnels due to uniform stress distribution.   
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Fig. 4 Isometric view of the cross-tunnel showing the deformation patterns around the tunnel 

surface for three different cross sections 

 

Further, even in case of discontinuum models, a similar heaving response of the 

tunnels had been observed, with reduced floor heaving in HS curved invert tunnels. It 

should be noted that, the displacement magnitudes in discontinuum modelling is not a 

defining result to show the effectiveness of the geometry considered, as the displace-

ments computed are accounting to the movement/detachment of the individual blocks 

and it is not the overall response of the tunnel. Hence, from the overall deformation 

patterns of the discontinuum models for the geometries considered, Horse shoe 

shaped tunnel with curved invert was observed to have a much stable profile than 

compared to HS Flat invert and D-shaped tunnels. 
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Fig. 5.  a The vertical dotted lines ((1) 90 m, (2) 60 m, (3) 50 m, (4) -50 m) indicate the loca-

tions of four tunnel cross-sections; b Deformation patterns for 3 tunnel shapes considered at 

different cross-sections; c  Deformation patterns for Horseshoe tunnel with curved invert at 

longitudinal-sections A-A’ and B-B’ 

Figure 5(a) shows the plan of the section at tunnel floor. The vertical dotted lines 

((1) 90 m, (2) 60 m, (3) 50 m, (4) -50 m) indicate the locations of four tunnel cross-

sections. The cross-section a-a’ pass through the experimental chamber (EC) and b-

b’pass through the access tunnel (AT). The cross-sections c-c’ and d-d’; cuts 

through the experimental tunnels ET-1 and ET-2.  Figures 5(b) summarize the dis-

placements computed for the discontinuum model at various cross sections for all the 

three geometries. The deformations in the side walls of D-shaped tunnel are found to 

be significant than compared to the other two shapes with curved side walls. For 

comparison of the computed graphical results, the maximum displacement is set to 

2mm and displacements profiles are studied. It can be seen that, in case of D-shaped 

tunnel, the rock blocks have been detached from the haunch of the tunnel. Also, floor 

heaving was significant along with displacements in side wall. In comparison, an 

improved stability in terms of lower displacements has been observed for the HS tun-

nel with flat invert. However, the floor heaving was observed to be distinctive at sec-

tion a-a’ i.e. for experimental chamber. However, HS curved invert tunnel, had sig-

nificantly lower vertical displacements with magnitude of 0.1mm. Hence, for the 

tunnel sections in jointed rock, which is experiencing floor heave, the HS tunnel with 

curved invert shall prove favourable. Figures 5(c) show the deformation distributions 

along the tunnel axis (sections A-A’ and B-B’) where the displacement vectors 

illustrates the sagging roof and floor heave for the HS curved invert tunnel.  

Table 3. Computed Maximum and Minimum Principal stresses 

S. No. 

 

Shape of the tunnel 

Maximum Principal 

stresses 

(MPa) 

Minimum Principal 

Stress (MPa) 

1 D-shaped tunnel 18.85 -0.55 

  -5.84 -32.72 

2 HS flat invert 19.95 -0.53 

  -5.64 -27.36 

3 HS curved invert 19.2 -0.48 

  -5.56 -25.56 

 

Table 3 summarizes the maximum and minimum principal stresses for all the three 

geometries computed along the tunnel axes. The minimum of major principal stresses 

(tensile) exist surrounding the vicinity of surrounding opening. Tensile stress in all the 

cases were in the range of 19 MPa. Also, it can also be observed that higher compres-

sive stresses of magnitude 32.7 MPa and 27.3 MPa were observed in the case of D-
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shaped tunnel and HS flat invert respectively. The stresses were observed to be con-

centrated at the tunnel wall and floor intersections. The minimum principal stress 

(maximum compressive stress) was observed to be in HS curved invert tunnel with 

magnitude of 25.5 MPa. Figures 6 (a and b) represent graphically the results presented 

in Table 3 for HS curved invert tunnel. The graphical results are not shown for all the 

geometries to avoid repetition.  

 

  

Fig.6. Principal stresses a Maximum principal stress and b Minimum principal stress distribu-

tion for Horseshoe tunnel with curved invert at longitudinal-sections A-A’ and B-B’ 

5 Summary and Conclusion 

The analysis allowed the computation of the complete stresses and deformation 

patterns around the tunnel excavated in jointed rock conditions, comparing with Intact 

rock/continuum model.  The floor heaving and crown displacements were observed to 

be distinctive in case of jointed rock conditions. 

1. The maximum displacement computed for tunnel section were in the range of 2 

to 2.5mm and it was 1.34 mm in case of intact rock continuum model. The max-

(a) (b) 
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imum floor heaving was observed as 1.6 mm and crown displacement as 1.2mm 

for tunnel excavated in jointed rock.   

2. The jointed rock displacements observed were of higher magnitude compared to 

continuum model and the maximum displacement computed was in the range of 

2-2.5mm for all the geometries considered. However, the vertical and horizontal 

displacements occur within safe limits i.e. 2% of the size of the opening. 

3. The minimum principal stresses (Maximum compressive) were observed to be in 

the range of 25 to 32 MPa and were much concentrated at the tunnel side wall 

and floor intersection.  

4. The rock mass strength when compared to maximum compressive stresses, 

yields a factor of safety more than 1, which falls within the safe limits. 

5. It was observed that Horse shoe shaped tunnel with curved invert was observed 

to have a much stable profile than compared to HS Flat invert and D-shaped 

tunnels. 

6. Also, the analysis reveals that, in jointed rock model in the vicinity of the open-

ings, the surfaces are very much affected due to occurrence of tensile stresses. 

Hence measures to strengthen surface of the underground opening and even 

weaker inner portions is identified. 
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