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Abstract. In this paper, Artificial Neural Network (ANN) and Genetic Expres-
sion Programming (GEP) have been used to develop two Liquefaction Index
(LI) equations which will be able to predict effectively whether a soil layer at
any depth would liquefy or not in case of an earthquake. 226 post-liquefaction
Cone Penetration Test (CPT) data (133 are liquefied cases and the rest 93 are
non-liquefied cases) have been collected from published literature and using the
collected data, an ANN and a GEP model have been built. From each developed
model, a LI equation has been developed which uses CPT data of soil and Peak
Ground Acceleration (PGA) as inputs and returns either 1 or 0 (1 means lique-
faction may occur and 0 means liquefaction may not occur). A comparative
study between both the models has also been conducted in this study.
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1 Introduction

Liquefaction is a phenomenon which can be observed in loose-saturated cohesionless
soil deposit during earthquake shaking under undrained conditions. The loose cohe-
sionless soil grains have a tendency to densify under the application of static and cy-
clic loading. During earthquake shaking, the loose saturated cohesionless soil grains
tend to densify due to which the pore water pressure in the soil increases (under un-
drained conditions) and as a result, the effective stress in the soil decreases which in
turn decreases the corresponding shear strength of the soil. As the effective stress in
the soil completely reduces to zero, the soil totally loses its shear resistance and starts
flowing like a fluid [1].

In this paper, two popular Machine Learning (ML) techniques – Artificial Neural
Network (ANN) and Genetic Expression Programming (GEP) have been adopted to
model empirical Liquefaction Index (LI) equations in order to predict future liquefac-
tion cases using seismic, soil and Cone Penetration Test (CPT) parameters as inputs.
The equations have been built and tested using a high-quality post liquefaction CPT
database. The equations return 1/0 if, the soil layer is/not potentially liquefiable at a
particular depth under seismic loading.
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The developed equations can be used by any person having no prior knowledge of
ML techniques. A comparative study amongst the developed empirical LI equations
has been conducted and the best LI equation for the prediction of future liquefaction
cases has been reported. Finally, sensitivity analysis has been carried out and the or-
der of influence of the input parameters on the output parameter i.e., LI has been
found out.

2 Database Compilation

A database has been compiled using 226 post liquefaction CPT records (133 liquefied
and 93 non-liquefied cases) collected from [2]. The database contains CPT data of
more than 52 sites and field observations of 6 different earthquakes, 4 in U.S. and 1
each in China and Taiwan respectively. Each record contains information about depth
of the borehole, cone penetration resistance, friction factor, effective and total vertical
stress, peak ground acceleration, moment magnitude of the earthquake and the corre-
sponding liquefaction index (1 for liquefied cases and 0 for non-liquefied cases).

3 Model Inputs Selection

The database contains six input parameters which are boring depth (D), cone tip re-
sistance (qc), friction ratio (Rf), total stress at the boring depth (σv), effective stress at
that same depth (σv') and peak horizontal ground acceleration (amax).

Table 1. Co-efficient of correlation matrix.

Now, so many inputs would make the models complex. In order to simplify the mod-
els, some highly correlated inputs can be eliminated [3]. To identify such inputs, a
correlation analysis has been performed. Table 1 presents the correlation matrix. It
can be observed in Table 1 that D has a high positive correlation with σv and σv'.
Again, a high correlation exists between σv and σv'. As σv' covers the influence of the
remaining two parameters (i.e., D and σv), only σv' has been selected instead of choos-
ing all the three concerned parameters.

D qc Rf σv σv' amax

D 1

qc 0.24 1

Rf 0.35 -0.27 1

σv 0.99 0.24 0.37 1

σv' 0.92 0.25 0.31 0.92 1

amax 0.11 0.04 0.03 0.11 0.27 1
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Therefore, input parameters finally considered for building the ML models are –
 Vertical effective stress at the boring depth (σv') (in kPa)
 Cone tip resistance (qc) (in MPa)
 Peak horizontal ground acceleration (amax) (in terms of g)
 Friction ratio (Rf) (in %)

4 Training and Testing Set

70% of the entire database (156 records) has been assigned to the training set and the
remaining 30% (70 records) has been assigned to the testing set. The function of train-
ing set is to build up the ML models, to make the models learn the underlying patterns
in the data while the function of testing set is to evaluate the trained models, calculate
the error between the actual and predicted output and helps in optimizing the models.
As suggested by Shahin et al. [4], statistical consistency has been maintained for both
the sets, i.e., Mean and standard deviation of the data in both the sets have been kept
as close as possible and the maximum and minimum values of all the parameters have
been included in the training set in order to increase the range of interpolation.

Table 2. Statistical parameters of training and testing set.

Model parameters
and dataset

Mean
Standard
deviation

Max Min Range

qc (MPa)
Training set 5.745 4.069 25 0.9 24.1
Testing set 5.978 4.168 19.4 1.1 18.3
Rf

Training set 1.231 1.064 5.2 0.1 5.1
Testing set 1.189 1.018 4.9 0.1 4.8
σv' (kPa)
Training set 75.253 34.892 215.2 22.5 192.7
Testing set 73.303 33.469 161.6 23.9 137.7
amax (g)
Training set 0.297 0.147 0.8 0.08 0.72
Testing set 0.272 0.136 0.69 0.08 0.61

5 Development of the ANN Model

A two-layer feed forward ANN model has been built in MATLAB R2013b environ-
ment using tan-sigmoid transfer function in both hidden and output layers. Bayesian
Regularization (BR) back-propagation learning algorithm has been used to train the
ANN model.
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5.1 Optimizing the Number of Hidden Nodes

In case of an ANN model, optimal number of hidden nodes is needed to be found out
in order to obtain the optimum performance of the model. Hecht-Nielsen [5] suggest-
ed that for building an ANN model having ‘i’ number of inputs, maximum possible
number of hidden nodes may be considered as (2i+1). As we have four input parame-
ters in this case, several ANN models having number of hidden nodes starting from 1
to 9 have been created and the ANN model having the lowest Mean Squared Error
(MSE) has been taken into account and the corresponding number of hidden nodes
has been chosen as the optimal number of hidden nodes which is four in this case.

Fig. 1. Plot between MSE and number of hidden nodes.

5.2 Building the Optimum ANN Model

The optimum ANN model has been generated by using four hidden nodes. ANN ar-
chitecture of the model has been provided for better understanding.

Fig. 2. Architecture of the ANN Model.
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Table 3. Performance of the ANN Model.

5.3 Development of LI Equation from the Optimum ANN Model

The mathematical expression as suggested by Goh et al. [6] incorporating all the in-
dependent input parameters and the dependent output parameter can be written as

= + [ ( + )] (1)
Where,
Yn = Predicted output parameter.
fh & fo = Tan-sigmoid transfer function for hidden and output layer respectively.
bo = Output nodal bias.
wk = Connection weight between the kth hidden node and the output node.
bhk = Bias of the kth hidden node.
wik = Connection weight between the ith input node and the kth hidden node.
Xni = ith input parameter.

Table 4. Weights and biases of the ANN model.

Hidden
Node

Input-Hidden Weight
Hidden-
Output
Weight

Bias

qc Rf σv' amax LI Hidden Output

1 -5.433 -2.34 -0.91 2.692 21.267 -3.261

-8.69
2 5.71 -9.609 -2.659 2.383 -11.174 -0.405

3 2.535 -4.33 -3.99 -1.471 15.192 -1.915

4 -8.225 -6.036 14.718 12.681 13.09 7.933

Training Set (156 cases)
Prediction
Rate (%)

Liquefied cases
Actual 96

100
Predicted by the ANN model 96

Non-liquefied
cases

Actual 60
95

Predicted by the ANN model 57

Testing Set (70 cases)
Prediction
Rate (%)

Liquefied cases
Actual 37

100
Predicted by the ANN model 37

Non-liquefied
cases

Actual 33
87.88

Predicted by the ANN model 29
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By substituting the values of weights and biases shown in Table 4 in Equation (1), the
model equation for the prediction of LI has been developed. The following equations
can be written to arrive at a correlation of the output parameter with the input parame-
ters. = −5.433 − 2.34 − 0.91 + 2.692 − 3.261 (2)= 5.71 − 9.609 − 2.659 + 2.383 − 0.405 (3)= 2.535 − 4.33 − 3.99 − 1.471 − 1.915 (4)= −8.225 − 6.036 + 14.718 + 12.681 + 7.933 (5)
All the values of input parameters are needed to be normalized in the range of [-1,1]
before substituting in the above Equations (2) to (5) using Equation (9) and the limits
of the training data presented in Table 2.= −3.261 tanh( ) − 0.405 tanh( ) − 1.915 tanh( ) + 7.933 tanh( ) − 8.69 (6)( ) = tanh( ) (7)
The Equation (7) has been de-normalized to Equation (8) using Equation (9) and the
limits of LI i.e., [0,1]. = 0.5{tanh( ) + 1} (8)
If, ≥ 0.5, Liquefaction Index should be considered as 1 which means the soil layer
may liquefy at the concerned depth.
If, < 0.5, Liquefaction Index should be considered as 0 which means the soil layer
may not liquefy at the concerned depth.

Normalization Equation. The equation for normalization is given as= 2( − )− − 1 (9)
Where,
Xn = Normalized input parameter data in the range of [-1,1].
X = Actual given input parameter data.
Xmax , Xmin = Limits of the input parameter.

6 Development of the GEP Model

GEP is a supervised ML technique which is mainly used for regression and classifica-
tion problems. GEP follows an evolutionary algorithm, it can learn and adapt by alter-
ing its shape, size and composition. GEP is related to Genetic Algorithm (GA) and
Genetic Programming (GP). The concept of linear chromosome or individual which
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represents each data has been inherited from GA and the concept of expression trees
of various shapes and sizes have been inherited from GP. In this study, the GEP mod-
el has been modelled using GeneXproTools 5.0.

The optimum GEP model has been obtained using four genes per chromosome
(Each gene represents each attribute). Root Mean Squared Error (RMSE) has been
used as the fitness function to select the fittest chromosomes. Addition function has
been used to link up all the sub-programs. The optimum GEP model has been ob-
tained by 1,00,000th generation. The model equation for the LI prediction has been
obtained by adding up the mathematical expressions obtained by decoding the sub-
expression trees.

Table 5. Performance of the GEP model.

6.1 Expressing the Sub-Expression Trees

The four sub-expression trees (one sub-expression tree per gene) which have been
obtained from the GEP model are as follows

Fig. 3a. Sub-Expression Tree – 1.

Training Set (156 cases)
Prediction
Rate (%)

Liquefied cases
Actual 96

94.79
Predicted by the GEP model 91

Non-liquefied
cases

Actual 60
88.33

Predicted by the GEP model 53

Testing Set (70 cases)
Prediction
Rate (%)

Liquefied cases
Actual 37

94.59
Predicted by the GEP model 35

Non-liquefied
cases

Actual 33
87.88

Predicted by the GEP model 29
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Fig. 3b. Sub-Expression Tree – 2.

Fig. 3c. Sub-Expression Tree – 3.

Fig. 3d. Sub-Expression Tree – 4.

Where,d0 = qd1 = Rd2 = σd3 = a Input Parameters



9G1 − C0 = 1.47G2 − C8 = 0.21G2 − C3 = −1.833G2 − C2 = 4.453G3 − C4 = −1.597G4 − C7 = −3.424G4 − C0 = 6.236G4 − C4 = −2.558G4 − C3 = −6.056 ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫ Constants obtained from the GEP model

Mathematically expressing the sub-expression trees –

1 = tan 1 − , . , (10)
2 = tan ( . , ) , ∗ {−0.545 ∗ max(4.453, )} (11)3 = ( ) − 2.593 (12)4 = tan min −2.558 , −6.056 + + max 2.812, (13)= 1 + 2 + 3 + 4 (14)

If, ≥ 0.5, Liquefaction Index should be considered as 1 which means the soil layer
may liquefy at the concerned depth.
If, < 0.5, Liquefaction Index should be considered as 0 which means the soil layer
may not liquefy at the concerned depth.

7 Comparison with the Robertson and Wride (1998) Method

A comparative study has been carried out with the Robertson and Wride [7] method.

Factor of safety against liquefaction ( .. ) has been calculated for all the cases of

both the sets to classify the liquefied and non-liquefied cases. CRR7.5 values have
been calculated in accordance with the guidelines reported by the authors. CSR7.5

values have been calculated by following the guidelines reported by Youd et al. [8].
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Table 5. Performance of the Robertson and Wride (1998) Method.

Fig. 4. Comparison of all the models (Training set).

Training Set (156 cases)
Prediction
Rate (%)

Liquefied cases
Actual 96

83.33Predicted by the Robertson and
Wride (1998) Method

80

Non-liquefied
cases

Actual 60
80Predicted by the Robertson and

Wride (1998) Method
48

Testing Set (70 cases)
Prediction
Rate (%)

Liquefied cases
Actual 37

83.78Predicted by the Robertson and
Wride (1998) Method

31

Non-liquefied
cases

Actual 33
78.79Predicted by the Robertson and

Wride (1998) Method
26
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Fig. 5. Comparison of all the models (Testing set).

8 Sensitivity Analysis

Connection Weight (CW) approach has been adopted as the method for conducting
sensitivity analysis for all the cases. In case of CW approach, algebraic operations are
done on input-hidden weight matrix and hidden-output weight matrix of the optimum
ANN model. After the operations, one gets the value of relative importance of each
input parameter and order of importance of input parameters is done accordingly. The
details of CW approach can be found in [9].

The order of influence of the input parameters on the predicted LI obtained after
carrying out sensitivity analysis using CW approach –

PGA > Effective stress at the boring depth > Friction factor > Cone tip resistance

9 Conclusion

From Fig. 4 and 5, it can be observed that the ANN model has provided the optimum
prediction performance; GEP model has also provided satisfactory prediction perfor-
mance. Both the models – ANN and GEP have performed better than the convention-
al Robertson and Wride [7] method. Henceforth, it is recommended to use both the
ANN and GEP models together with the conventional Robertson and Wride [7] meth-
od to be sure about the classification of liquefied and non-liquefied cases.
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