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Abstract. Application of geostatistical methods to in situ site characterization
has received much attention in the last couple of decades. One of the most pop-
ular and accurate geostatistical method is kriging technique. There are three
types of kriging techniques: simple, ordinary, and universal kriging. This study
has considered developing a generalized ordinary kriging algorithm often pre-
ferred for site characterization. Ordinary kriging assumes the mean of a station-
ary variable as a constant but to be estimated. In kriging, prediction of spatial
variability of a random variable can be obtained using the best fitting semi-
variogram functions. Various semi-variogram models available are exponential,
spherical, and Gaussian. Kriging technique generates a contour map and the er-
ror variance map to infer on the spatial variation of the parameter under consid-
eration. In this study, the clay content parameter from a refinery project area in
Orissa is interpolated using ordinary kriging technique. A generalized
MATLAB code is developed to select the best fitting semi-variogram for the
sample data and to apply ordinary kriging technique and generate the surface
profile. Distribution of clay content values across the region is studied using
prediction surface, and accuracy is checked using error variance profiles. Re-
sults of the analysis are also compared with simulation using ArcGIS based
geo-statistical analyst® and cross-validated using statistical parameters. The
proposed code can be applied to predict various other in situ soil properties in
the field of geotechnical engineering.
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1. Introduction

One of the complex tasks in any major infrastructure project is to handle geotechnical
properties, which are heterogeneous and spatially varying across the domain. Geosta-
tistical techniques that deal with spatial variables to predict the spatial distribution of
observed finite parameters can aid in geotechnical engineering. Geostatistical tech-
niques are classified into two, viz., deterministic and probabilistic (kriging algo-
rithms), based on the underlying functions. Kriging techniques developed by Krige
(1951) and Matheron (1963) solves spatial estimation problems based on least-square
estimators. There are two categories of kriging techniques, namely linear and nonline-
ar. Linear kriging algorithms are based on linear regression technique and are classi-
fied as simple kriging, ordinary kriging, and universal kriging. Simple kriging as-



sumes the mean of a stationary variable as a constant and is known prior to kriging,
while ordinary kriging assumes the mean value localized to neighborhood and univer-
sal kriging assumes the mean value to be locally varied with neighborhood. The ad-
vantage being these algorithms are capable of generating prediction confidence/error
variance map along with the prediction surface (Johnston et al., 2001). There are only
a few findings on factors affecting the kriging estimates such as kriging techniques,
sample size, sampling design, and the nature of the data (Asa et al., 2012). This study
aims at developing a reliable code for ordinary kriging by identifying the model sensi-
tive parameters in terms of search neighborhood, underlying semi-variogram func-
tions along with the sample size and various other parameters.

Numerous researchers have demonstrated that kriging algorithms can be used for

geotechnical engineering applications (Soulie et al., 1990; Jaksa, 1993; Rouhani et.
al., 1996; Fenton, 1997; Robinson and Metternicht, 2006; Lenz and Baise, 2007; Ex-
adaktylos, 2008; Samui and Sitharam, 2010; Asa et al, 2012; Rui Yang et al, 2019).
Soulie et al. (1990) have found the value of undrained shear strength (S,) at different
depth using kriging from various borings in B-6 clay in Quebec. They developed
variograms to model the variation in S, values along with both horizontal and vertical
directions. Honjo and Kuroda (1991) used kriging to predict the probability of slope
failure subjected to a fixed driving force. Fenton (1997) has used kriging to calculate
the probability of settlement beneath a footing. Rui Yang et al. (2019) used kriging to
find the best sampling location in case of slopes.
ArcGIS provides various tools (Spatial Analyst® and Geostatistical Analyst®) to
apply geostatistics (Johnston et al., 2001). Even though ArcGIS is a powerful com-
mercial tool for geostatistics, some of the limitations include (a) high cost, (b) lacks
automation in selecting the best semi-variogram model for the experimental data, and
(c) inability to identify and separate the positional outliers from the data set. In addi-
tion to ArcGIS, GStat, and mGStat models are widely available geostatistical tools
with its interface in MATLAB. ASTM D 5923-96 on ‘Site Characterization for Envi-
ronmental Purposes with Emphasis on Soil, Rock, the Vadose Zone and Ground Wa-
ter’ suggests various important factors while applying kriging techniques. Code rec-
ommends that linear geostatistical techniques should be applied only when the soil
data passes normality. In other cases, nonlinear geostatistical techniques should be
applied. This codal provision suggests that if very few spatial outliers are present,
then one can go with ordinary kriging technique. If a large number of spatial outliers
are present, then nonlinear kriging techniques are to be adopted. In addition, there is
no geostatistical tool available specific to geotechnical engineering. This paper aims
at developing a generalized MATLAB ordinary kriging algorithm which can readily
be used by a construction/site manager in generating the optimal surface and error
variance surface of the parameter of interest from the raw spatial data overcoming the
limitation of ArcGIS.

2.  Methodology



A generalized MATLAB code that uses ordinary kriging algorithm to generate the
prediction and error surfaces for various site parameters was developed in the present
study. The generalized code includes unique functionalities as follows:

2.1 Conversion of co-ordinate system

Global positioning system (GPS) units used for site investigation usually collects the
borehole location in spherical (latitude/longitude) system with respect to an assumed
datum and spheroid. However, for a smaller area of interest, representation in planar
co-ordinate systems is convenient and appropriate (Canters, 2002). The code is devel-
oped to consider the datum and projections corresponding to the geographic location
of the study area, and project into planar co-ordinates.

2.2 Removal of positional outliers

A positional outlier is defined as any observation which positionally deviates by an
excessive amount from other observations (Hawkins 1980). The developed code de-
tects the positional outlier using point density (number of data points per the rectangu-
lar area outlined by the four extreme directional points) approach, by suppressing
each borehole location, one at a time and comparing the point density for each modi-
fied rectangular area (with a limit of 10-15% threshold)

2.3 Test for normality of the data

Graphical methods (Q-Q plots) available in conventional tools are not suitable for
normal test of small samples due to difficulty with the visual comparison. Statistical
based Kolmogorov-Smirnov test which is more preferred is used here (at 5% and 10%
significance levels)

2.4 Generating the experimental semi-variogram

The empirical semi-variogram (Matheron 1972) of the data set is given by:

Y (h) =§N(IhI)Z’iV=1[Z(xL- +h) = Z(x)]* @

where, Z(xi) is the measured value of the parameter at location xi; Z(x;+h) is the
measured value of the parameter at its neighbor (x,+h); |h| is the average distance
between the pairs of data points; and N(|h|) is the number of pairs of data points that
belongs to the distance interval represented by h. An ideal semi-variogram first in-
creases non-linearly with distance and levels off at a certain distance (range) and after
some point, distance will have no effect on the variability in the parameter.

2.5 Fitting the best theoretical model



As experimental semi-variogram lacks from the underlying mathematical function to
extend for the unknown data points, it is to be compared with various theoretical
models available in the literature (Isaak and Srivastava 1989; Clark and Harper 2000)
including Gaussian (Goovaerts 1997), spherical (Deutsch and Journel 1998) and ex-
ponential (Deutsch and Journel 1998) variogram models. Each model is defined with
three parameters, viz., range, a; sill, c; and nugget, cO.

3
Spherical model: y_ (h) = {C Eg B é(g) ]] 2
¢, forh<a
Gaussian model: y, (h)=c [l-exp < g)] 3)
Exponential model: v, (h) =c [l-exp (2)] (4)

Model fitting is done using a least-square fitting optimization tool in MATLAB (by
varying model parameters). The model having minimal root-mean-squared error
(RMSE) in semi-variance value between the experimental and theoretical model and
the corresponding model parameters (a, ¢, c0) was chosen for use with ordinary
kriging code.

2.6 Application of ordinary kriging algorithm

Ordinary kriging (OK) is the most frequently used kriging technique in site investiga-
tion (Samui and Sitharam, 2010), where the unknown value is estimated as (Deutsch
and Journel 1992):

Zo () = m(x) + X7 4(%). [Z(x) = m(®)] ©)

where, m(x) (= E {Z(x)}) is the location-dependent expected value of Z(x); and A; (X)
is the kriging weight given to x;. The ordinary kriging technique is a non-stationary
algorithm that involves estimating the mean value at each location and is generally
applied in moving search neighborhoods. Ordinary kriging system solves system of
linear equations of the form:
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The resulting estimation variance for ordinary kriging, a2,, is given by
05 = Nie1 AiYoi + 1 (M

where, W is the Lagrangian multiplier considering the unbiased condition



2.7 Factors affecting ordinary kriging algorithm precision

Factors affecting algorithm precision are specified limiting radius, and minimum and
maximum values of neighbor points. Those points lying farther are ignored based on
Tobler’s law of geography, which says that as the distance between the points in-
creases, properties are less co-related in space. This methodology is called searching
neighborhood. The developed MATLAB code calculates the best suitable neighbor-
hood combination factors for each grid location. While estimating the kriging
weights, some values are observed to be negative as some points are "shadowed" by
closer points. Negative weights can affect the accuracy of prediction by increasing or
decreasing the prediction estimate/ estimation variance. The program also eliminates
the points with the most negative weight, and recomputes the weights and repeat the
process until the value becomes positive. These all factors improve the precision of
developed code.

3. Case Study: Paradip Refinery Project, Orissa

3.1 Site description

The refinery site (Fig. 1) is located approximately 7 km South West of Paradip Port
on the North bank of the River, Kansarbatia, and is located near Paradip port in
Jagatsingpur district of Orissa, India. Geographic location of the site is 21° 07°11.17”
N latitude, and 90° 18° 20.28” E. longitude. The geographical coverage area of the
region is about 3549 acres (14.96 km?). There were total fifty-seven (57) boreholes
drilled to conduct extensive site investigation. Ground surface was slightly uneven as
boreholes drilled in the area under study differed by 0.63 m to 4.78 m, due to part of
the area having been filled. During the investigation, it was observed that the filled up
area constitutes yellowish brown fine to medium sand to a depth of about 3.0m, fol-
lowed by a layer of soft to firm clay followed by sand strata which is loose at the top,
becoming medium dense to occasionally dense. Alternate layers of (medium dense to
very dense) sand and (stiff to hard) clay up to the maximum depth 100m underlie
these deposits.
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Fig. 1. Schematic of Paradip refinery project site with boreholes
3.2 Spatial outlier removal

Study parameter taken for the case was estimation of clay content at 3m depth and
had values ranging from 1% to 47%. There were total of 35 data values for the study
parameter with a point density of 1.21 /km? of borehole coverage area. The first ob-
jective was to separate spatial outliers present in the data. The algorithm estimates
initial point density (with n data points), and then iteratively compares with point
density obtained after removing one point at a time (with (n-1) data points) and finds
the positional outlier. One such dominant positional outlier which has increased point
density from 1.21 /km?to 2.36 /km? was observed during the process (Fig. 2) and
eliminated from the analysis.
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Fig. 2. Spatial distribution of data considered in the analysis
3.3 Normality check

A hypothesis based Kolmogorov-Smirnov test that suits for smaller samples was ap-
plied with the algorithm as Q-Q plots in ArcGIS tools cannot accurately check for the
normality. Test results show that distribution follows the normal distribution at a sig-
nificance level of 5%.

3.4 Semi-variogram and model fitting

First step before applying linear geostatistics was to develop the experimental semi-
variogram model. The algorithm is designed so as to consider optimal lag divisions of
10 and generate the semi-variogram. Fig. 3(a) shows that experimental semi-
variogram has a nugget effect initially, followed by a gradual non-linear increase
indicating that there is a strong influence of distance on the study parameter and then
a sudden decrease and increase of the values. This is because certain points have
failed in satisfying the basic assumption of correlation of parameter with distance.
This observation led to the development of outlier separation study for the data. As
the point causing semi-variance value less than 150 m? has been separated as outlier
the semi-variogram has a gradual increasing nature (Fig. 3(b)), closely following the
ideal nature. The decreasing trend observed in the semi-variogram is mainly due to
either positional outlier or inaccuracy in data. Hence, accuracy in data collection is an
important factor before the application of kriging technique.
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Fig. 3. Comparison of experimental variogram with theoretical models before (left) and after
(right) outlier separation

Next step in the analysis was to select the best fitting theoretical model for the empiri-
cal model. Various theoretical semi-variograms were fitted to the experimental vario-
gram (Fig. 3(b)) using the developed algorithm based on the optimization of the pa-
rameters (such as range and sill). The final value of the theoretical semi-variogram
was taken as the initial guess for theoretical model parameters, and optimization was
done by giving upper bound and lower bound between 0.8 to 1.2 times the initial
guess values. The optimal theoretical model is selected based on the minimum residu-
al (RMSE) values for the semi-variance obtained from theoretical and experimental
semi-variogram. Best fitted model to the data was spherical model with sill and range
values equal to 263.8 m and range 2059 m, respectively.

3.5 Evaluation of Kriging techniques

Once the theoretical model is fixed, evaluation using the developed ordinary kriging
algorithm is done. Unknown locations were specified by gridding with a division
factor of 10 for the largest dimensions across the region. The optimal search neigh-
borhood factors to evaluate ordinary is obtained using algorithm by varying model
sensitive parameters that include-minimum and maximum number of neighborhood
points and the searching radius. It was observed that an increase in searching radius
has an effect in simulation accuracy to certain extent, beyond which, there is no fur-
ther reduction in RMSE (Table 1).



Table 1. Selection of optimal neighborhood parameters

2 points(Min) 3 points(Min.)
Lin]iting
(52%';;. 3 4 5 4 5 6
distance points points points points points points
between (Max) (Max) (Max) (Max) (Max) (Max)
pairs)
15% 7.68 8.00 8.11 9.15 9.24 9.39
20% 7.60 7.95 8.11 8.12 8.28 8.46
25% 7.59 7.98 8.15 7.98 8.15 8.58
30% 7.59 7.98 8.14 7.98 8.14 8.57
35% 7.59 7.98 8.15 7.98 8.15 8.57
40% 7.59 7.98 8.14 7.98 8.14 8.57

Computed negative weights were converted to positive weights. The minimum and
maximum neighborhoods of two and three were obtained as optimal neighborhood to
generate the prediction and error variance surfaces after the removal of outliers (as
given in Tables 1 and 2). It can be clearly seen from Table 2 that outlier has a signifi-
cant effect in minimizing the residual statistics, thereby increasing the model perfor-
mance.

Table 2. Effect of outliers on Kriging simulations

RMSE (m) Mean Error (m)
Krigin . . .
Algori%hn? Before outlier ':J:ﬁ;r Before outlier  After outlier
separation separation separation separation
ko.rd.'”ary 9.10 7.59 077 0.24
riging

Cross-validation of the data was performed by suppressing values at each known
location, and re-computing the value using the fitted model parameters. Fig. 3.4
shows the prediction surfaces and error surfaces generated using the developed ordi-
nary kriging technique. Clay content values are very low along the northeast region of
the study area and higher in the western region. The gaps in the prediction surface
represent the inability of the algorithm to interpolate for the unknown with the given
model due to the absence of neighborhood parameters. The conventional tools at such
locations will execute extrapolate unknown values and will mislead the results. These
white spaces are the sampling locations where further site investigations are suggest-
ed.
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Fig. 4. The prediction (left) and error variances (right) surfaces

It was also found that lag distance/lag number and grid divisions have a negligible
effect on the choosing of best semi-variogram (as given in Tables 3 and 4). Hence, an

optimal lag division of 10 and grid division of 10 was taken to reduce the computa-
tional time in each analysis.

Table 3. Selection of optimal lag divisions

Lag divisions RMSE(m)
10 7.60
15 7.59
20 7.60

Table 4. Selection of optimal grid divisions

Grid Divisions RMSE (m)
5*5 12.49
10* 10 7.59

15*15 7.59
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Results of cross-validation (Fig. 5) suggest that the model predicted clay content val-
ues are in convergence with the observed data at the known locations.

z

F -

z = .

<l " .

z - RATS « T

C ) -0
-

‘3 < - LA -

> =* - =

¥ 104 -

3 P

B

Ofserved Valoes of Clay Content (%)

Fig. 5. Comparison of observed and predicted clay content values during cross-validation
3.6 Comparison between conventional statistical tools and the developed tool

Geostatistical analysis was also performed for the sample data in ArcGIS. A compara-
tive study of residual statistical parameters was essential for factors such as outlier
separation process, best theoretical model, elimination of negative weights, providing
the optimum grid intervals for interpolation, etc., considered in the developed code.
Residual statistical parameters used in cross validation were Mean Error (ME), Stand-
ard Error (SE), Root Mean Squared Error (RMSE), Kriged Root Mean Square Error
(KRMSE), etc. It was observed that the code has improved the prediction accuracy (in
terms of RMSE) by 38.8 - 48.4%.

4. Conclusion

The research was aimed at developing an automated, cost-efficient, generalized and
well precise ordinary kriging algorithm to apply in field of geotechnics. The devel-
oped code was tested for clay content parameter collected from the study area, and
evaluated using cross-validation and residual statistics. Most of the limitations of the
conventional tools, viz., hypothesis based normality check, removal of positional out-
liers, automated selection of base variogram and successive elimination of negative
weights were achieved by the developed algorithm. The developed code also consid-
ers appropriate datum to geographic location of study area, and project it onto carte-
sian system by improving the accuracy of predictions. The developed algorithm has
significantly improved the performance of the linear geostatistical models by 57-76%
over the conventional tools.
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