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Abstract. The popularity of nature-inspired meta-heuristics in solving complex 

optimization problems is on a steady rise within a rapidly evolving world. Swarm 

intelligence (SI) optimization inspired by the behavior of social organisms in 

flocks of bird, schools of fish, colonies of ants and bees perform the search 

through agents whose trajectories are primarily adjusted stochastically and spo- 

radically deterministically, in accordance with golden rules drawn from Mother 

Nature. Each entity within the swarm is influenced by its own ‘best’ and group 

‘best’ position, while moving randomly to converge to optimal through competi- 

tion and cooperation. The sparrow search algorithm (SSA), developed by Xuea 

and Shen (2020) and slightly improvised (LSSA) by Ouyang, Zhu and Wangis 

(2021) is a very recent SI approach which adopts the sparrow producer–scrounger 

model metaphorically for designing optimum searching strategies, inspired by the 

group wisdom, foraging and anti-predation behavior of sparrows. LSSA is 

experimented on some hard benchmark test functions to test its effectiveness and 

thereafter, applied in searching the critical failure surface in slope-stability prob- 

lem. The objective function is the factor of safety against failure. The stability 

analysis is performed integrating the present tool with Bishop's simplified method 

(1955). Results show LSSA is a strong contender to methods like genetic- 

algorithm, simulated-annealing, big-bang big-crunch and artificial bee colony al- 

gorithms. The study illustrates the flexibility, efficiency and robustness of the 

methodology in function optimization. 

 
Keywords: nature inspired meta-heuristics; swarm optimization; learning spar- 

row search algorithm; slope-stability; critical surface. 

 

1. Introduction 
 

Nature is a principal source of inspiration in devising optimization models for solving 

high degree of complex problems. Swarm intelligence within nature is defined as “any 

attempt to de-sign algorithms or distributed problem-solving devices inspired by the 

collective behaviour of social insect colonies and other animal societies” (Bonabeau et 

al, 1999). It is a paradigm that considers collective intelligence as a behaviour that 

emerges through the interaction and cooperation of large numbers of homogeneous 

lesser intelligent agents (like fish, birds, ants, bees etc.) in the environment. “Two fun- 

damental concepts, self-organization and division of labour, are necessary and suffi- 

cient properties to obtain swarm intelligent behaviour such as distributed problem- 
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solving systems that self-organize and adapt to the given environment in recent years” 

(Karaboga, 2005). The information is typically stored in the participating homogeneous 

agents, or is stored or communicated in the environment through the use of pheromones 

in ants, dancing in bees, proximity in fish and birds and immune system in cells. Like 

evolutionary computation, swarm intelligence ‘algorithms’ are adaptive strategies that 

are typically ap-plied to search and optimization domains. They are characterized by 

decentralized control, self-organization and adaptation. 

In the present study, LSSA algorithm is initially tested on benchmark test functions 

like the Rosenbrock function (1960), Rastrigin function (1974), Ackley function (1987), 

and then applied to single objective optimisation of a 3D real-world problem- finding 

the critical failure surface in slope-stability problem. 

 
2. Nature Inspired Optimization: Thrust of Artificial Intelligence 

 
Artificial intelligence (AI) is the study and design of ‘intelligent agents’- a system that 

perceives its environment and takes action accordingly to maximize its chances of suc- 

cess. To solve the most difficult problems, AI has developed a large set of tools, the 

main amongst these being the search algorithms and optimization methods encompass- 

ing evolutionary computation. Simple exhaustive searches are rarely sufficient for most real-

world problems of varied dimensions, as the number of points in the search space rapidly 

grows to astronomical numbers. The result is a search that is too slow or virtu- ally 

incomplete. The solution is to use "heuristics" or "rules of thumb" that eliminate 

exploration of futile spaces or redundant points and supplies the program with the "best 

guess" to the optimal global solution track. An optimization method that employs mul- 

tiple candidate solutions (a population or swarm) and in-effect are evolutionary; typi- 

cally require some kind of selection or survival of the fittest rule for combining and 

generating new candidate solutions. It begins with a random population of organ-isms 

(the ‘wild’ guesses) within the limits of the search domain of each problem dimensions, 

and then allow them to recombine and mutate in accordance with a mixture of stochastic 

(random) and deterministic strategies for exploration (wide search) and exploitation 

(neighbourhood search) respectively, with the sole aim of the fittest to survive in each 

generation (refining the guesses). In the process, the stochastic element is generally 

higher than the deterministic element in a pure effort to significantly maintain diversity 

in the swarm as they converge to the global optima. In AI, an evolutionary algorithm 

(EA) is a generic population-based metaheuristic optimization algorithm that is inspired 

by the mechanics of biological evolution: re-production, mutation, recombination, and 

selection. Candidate solutions play the role of individuals in a population, and the fit- 

ness function determines the environment within which the solutions "live". EAs often 

perform well with approximating solutions to all problems, as they prima-facie do not 

make any assumption about the underlying fitness landscape. This generality has led to 

successes in fields of genetics, physics, chemistry, biology, engineering, art, eco-nom- 

ics, marketing, operations research, robotics, social sciences and politics. 

Nature inspired algorithms covers the wealth of modern metaheuristic algorithms, 

developed with an aim to carry out global search, typical examples are Genetic Algo- 

rithms (GA) (Holland, 1975; Goldberg, 1989), inspired by Darwin’s natural selection 

and survival of the fittest rule and Particle Swarm Optimisation (PSO) (Kennedy & 
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Eberhart, 1995), inspired by movements of flocks of birds and shoals of fish. Ant col- 

ony optimization (ACO) (Dorigo et al, 1991; Colomi et al, 1991) takes inspiration from 

the foraging behavior of ants. Another metaheuristic algorithm is Simulated Annealing 

(SA) and its variants (Kirkpatrick et al 1982, 1983) that mimics the slow cooling of 

molten metals to achieve a crystalline absolute minimum energy state. Recently, two 

new metaheuristic algorithms, called Cuckoo Search (CS)-(Yang & Deb 2009) based 

on the obligate brood parasitic behaviour of some cuckoo species in combination with 

the Lévy flight behaviour of some birds and Firefly Algorithm (FA) (Yang, 2009, 2010) 

-inspired by the flashing pattern of tropical fireflies have been used successfully to solve 

hard multimodal problems. Sparrow Search Algorithm (SSA) (Xue J. & Shen B. 2020) 

is the latest add-in to this wealth of knowledge inspired by the foraging behav- ioral 

strategies of house sparrows. 

 
3. Sparrow -Their Biological Characteristics 

 
The sparrow, a sexually dimorphic, highly gregarious passerine bird displays a natural 

instinct of curiosity about anything and everything around and are always vigilant of 

the surrounding. A typical group constitutes three member types, the producers, 

scroungers and rangers (or scouts). In contrast with other small bird species, sparrows 

are exceptionally intelligent with strong memory. Sparrows are opportunistic, intelli- 

gent feeders and often use a variety of feeding techniques, adapting their methods to 

best suit the current conditions of their habitat and prey. The producers actively search 

for the food sources, while scroungers obtain food by the producers. Evidence has 

shown that sparrows usually use behavioural strategies flexibly switching between pro- 

ducing and scrounging. In other words, the sparrows usually use the strategy of both 

the producer and scrounger to find their food (Barnard & Sibly, 1981). Spar-rows for- 

aging in groups can obtain food by searching or by social interaction with other group 

members. This is the producer-scrounger (PS) model, where producers actively search 

for food and scroungers (sparrows of lower dominance rank) profit from producers’ 

efforts through joining or stealing. The discoverer (producer) searches for food, and 

provides direction to other individuals in the population. Studies have shown that the 

individuals monitor the behaviour of others in the group. Meanwhile, the attackers in 

the bird flock, which want to increase their own predation rate, competes with food 

resources of the companions with high intakes. The energy reserves of the individuals 

play an important role and the sparrows with low energy re-serves scrounge more. The 

birds located on the periphery of the population, are more likely to be attacked by pred- 

ators and constantly try to get a better position. The birds which are located near the 

center, may move closer to their neighbours in order to minimize their domain of dan- 

ger. When a bird detects a predator, one or more individuals give a chirp and the entire 

group flies away. 

 

4. Sparrow Search Algorithm-A Novel Optimizing Tool 
 

The sparrow search algorithm (SSA) is an effective swarm intelligence optimization 

technique, which simulates the group wisdom foraging and anti-predation behaviors of 

sparrows. In accordance to the description of sparrows narrated above, a mathematical 
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model is constructed for the SSA with simplified idealized behavioural pattern of spar- 

rows with the consistent rules (A to F) as mentioned hereunder that has been put for- 

ward by Xue & Shen (2020). The SSA is divided into three phases: discoverer, follower, 

and investigator (scout or ranger). 

A. The producers typically have high energy levels and provide foraging areas or di- 

rections (guides) for scroungers. They have wide search range in identifying areas 

of rich food sources. The level of energy reserves depends on the assessment of the 

fitness values of the individuals. 

B. As the sparrow detects a predator, the individuals begin to chirp alarming signals. 

When the alarm value is greater than the safety threshold, the producers lead all 

scroungers to a safe area. 

C. Each sparrow can become a producer as long as it searches for better food sources, 

but the proportion of producers and scroungers is unchanged in the population. 

D. The sparrows with higher energy level act as producers. Starving scroungers are 

more likely to fly to other places for food in order to gain more energy. 

E. The scroungers always follow the producers who can provide the best food source 

location. Meanwhile, some scroungers may constantly monitor the producers and 

compete for food in order to increase their own predation rate. 

F. The sparrows at the edge of the group quickly move toward the safe area to get a 

better position when aware of danger, while the sparrows in the middle of the group 

randomly walk in order to be close to others. 

In the simulation experiment, virtual sparrows are randomly generated in the search 

space to find potential food sources. The position of sparrows is represented by the 

matrix shown in Eqn.-1, where n is the number of sparrows and d is the dimension of 

variables to be optimized. Upon random generation, the fitness value of individual spar- 

rows is expressed by the vector Fx given in Eqn.-2. The value of each row in Fx repre- 

sents the fitness value of individual species of each dimension. In this context, the lo- 

cation of a potential food source is used synonymously and interchangeably with the 

sparrow position and so is its fitness. Producers with better fitness naturally have pri- 

ority to obtain food in the search process. Further, the producers with the highest energy 

level being responsible for searching food and guiding the movement of the entire pop- 

ulation, has the ability to search food within the entire search domain effectively than 

the scroungers. According to rules (A) and (B), during each iteration, the location of 

the producer is updated as per Eqn.-3, where t indicates the current iteration, j the 

problem dimension = 1, 2, . . . , d and xt
i,j represents the value of the jth dimension of the 

ith sparrow at iteration t. The current number of iterations is represented by i and itermax 

is the maximum number of iterations (which needs some trials initially to find at what 

value this should be fixed such that the objective function converges to global optimum, 

since higher the itermax value, higher is the algorithm run-time). α ∈ [0, 1] is a random 

number. R2 ∈ [0, 1] and ST ∈ [0.5, 1.0] represent the alarm (or alert) value and the safety 

threshold respectively. R2, ST are both random numbers. Q is a random number which 

obeys normal distribution. L shows a matrix of 1 × d for which each - 4element inside 

is 1. At R2 < ST, implies there are no predators around and the producer (discoverer) 

enters a wide search space exploration mode. At R2 ≥ ST, some sparrows 

-(2) 
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have discovered the predator and issued an alert, and all sparrows need to quickly fly 

 
to other safe areas and that the discoverer will lead the follower to a safe location. 

Followers perform food searches after the discoverer and does neighborhood 

searches around the discoverer’s location. Scrounger’s (follower) position update is as 

per Eqn.-4, where xp    is the 
xt .exp

 -i 
,  if R  ST 


 optimal position currently 

xt +1 = 
 i, j   

 
.iter 


 2  - (3) occupied by the producer 

i, j    
xt 

 
+ Q.L 

max  
, 
 

if R 
 

 ST 

 

(discoverer). xworst represents the 

worst location currently. ‘A’ is a 

 i, j   2  
matrix of 1 × d where the value 

of each element is randomly assigned +1 or -1, and A+ = AT (AAT )-1. When i > n/2, it 

indicates that the sparrow population is aware of danger, at which point they make 

antipredation behavior. As for the scroungers, they need to enforce the rules (D) and 

(E). As some scroungers monitor the producers more frequently, as soon as they find 
that a producer has found good 

  xt - xt   food, they immediately leave their 

Q.exp worst i, j 
 ,

 
 

 

if i   

xt +1 = 
  i2  -(4) current position to compete for that 

i, j    
 

food. If they win, they get the food 


xt +1  + xt - xt+1 . A+. L, otherwise


 of the producer immediately 

  p i, j p  
(swapping its role as producer, 

while the producer which loses in the tussle becomes a scrounger), otherwise they 

continue to execute rule (E). In the simulation experiment, it is assumed that sparrows 

which are aware of danger, account for 10% to 20% of the total population. According 

to rule (F), the mathematical 

xt + . xt - xt , if f  f  
  

model can be expressed as Eqn.- 

5, where xbest is the current global 

xt +1 =     
-(5) optimal location. β, the step-size 

i, j   t 
i, j 

+ K.   f − f  , +   if f i = fg  control parameter is a random 

 i w   number obeying normal 

distribution with mean 0 and 

variance 1. K ∈ [−1, 1] is another random number and represents the direction in which 

the sparrow moves while also controlling the moving step-size. Here fi is the fitness 

value of the current sparrow. fg and fw are the optimal and worst fitness values within 

the current search scope, respectively. ε is a minutest real number so as to avoid zero- 

division-error. At fi ≠ fg , the current sparrow is at the boundary of the population and 

vulnerable to predator attack and the location needs to be adjusted. And fi = fg indicates 

x 
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that individual sparrow in the interior of the population is aware of the danger and need 

to be close to other sparrows to avoid the danger (search space exploitation or local 

search). Based on the idealization and feasibility of the above model, the basic steps of 

the SSA model can be summarized as the pseudo-code shown in Algorithm-1. 
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The idea of adaptive weight is brought in Eqn.-3, but this adaptive weight even has 

defects in the face of high-dimensional complex functions and may not open up a global 

vision. “Therefore, it is necessary to make use of lens reverse learning and random 

reverse learning to dig out more hidden positions, and to increase the diversity of the 

population” and supplement the optimization runs in the later stage. Eqn.-4 has the 

defect of near-zero points; hence, “nonlinear sine-cosine guidance is used to balance 

the local and global search. From the overall formula, the update distance between the 

front and back position of SSA is far, so the blind area between them becomes more. 

The local search based on the difference can improve the search precision and reduce 

the scope of the blind areas” (Ouyang C. et al, 2021). 

Figure 1. Lens schematic diagram (Ouyang C. et al, 2021). 

4.1. Learning Sparrow Search Algorithm 

 
Opposition-Based Learning Strategy Based on Convex Lens Principle. For mining 

new solutions in unknown areas and increase the population diversity and to avoid 

monotonicity and risk of local optimization, the lens learning principle is mimicked. In 

a certain search space, suppose an individual P of height h, xp is the projection of P onto 

the x-axis. A lens of focal length f is placed on the base point position O, O being the 

midpoint of [aj, bj], where aj and bj represent the lower and upper bounds of the jth 

dimension of the current solution. An image P′ of height h′ is obtained by the lens 

imaging, and its projection is xp′ (reverse point). The schematic diagram is shown in 

Figure 1. The reverse point xp′ of individual xp is obtained by taking O as the base point, 

by the lens imaging principle: a + b /2  − xp   
= 

h 
 

= k (scaling factor). After transfor- 

x/ − a + b /2  h/ 

mation, the reverse point for the jth dimension can be obtained as 
a + b a + b x j 

x j = j j 
+

 
 

j j 
−

 
 

p - (6). Different values of scaling factor, k from 0.7 to 1.3 
 

p 2 2k k 

has been used in the present study simulation runs. 

 
Opposition-Based Learning of the Worst Position. After the producer (discoverer) 

has searched, the worst position they get may not be necessarily reliable. From Eqn.-3 

and Eqn.-4, it is known that the worst solution will affect the later stage of optimization, 

and the minimum value will give scroungers (followers) a better search range. This 
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implies updating at the worst location is also necessarily important, which is generally 

ignored, only tracking the optimal location and ignoring the overall integrity of the 

algorithm. A random opposition-based mechanism to update the worst position is used 

in accordance with: xworst′ (t) = aj + rand * bj − xworst –(7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Guidance Strategy Based on Improved Sine-Cosine Algorithm. In the scrounger 

(follower) location update there are a few dynamic parameters, so it is easy to limit the 

search range of sparrow population and blindness, which limits the searchability of the 

algorithm. To improvise and expand the search scope, dynamic update of follower spar- 

row’s individual position by the sine-cosine characteristics is used: 


xt 

 

+ r · sin (r )·r ·xt − xt , r  0.5,  a  

xt +1 = 
 

 

1 2 3     p i 4 -(8), where r j = a − i.
 j 

 -(9). 
 x

t + r · cos(r )·r ·xt − xt , r  0.5, 1 j  iter  

  i 1 2 3     p i 4 max. 

Here, r1
j is a parameter, determined by the number of iterations, and it is the key to 

determine the individual search range. As the number of iteration increases, r1
j gradu- 

ally shrinks, and the sparrow search range tends smaller. aj is the lower search bound of 

the jth dimensional component of the concerned decision variable xi. r2 is a random 

i 

i 

ALGORITHM-1: SSA Framework 

Input: 

G: the max. generations or iterations 

PD: the number of producers (discoverers) 

SD: the number of scroungers who per- 

ceive danger (investigators/scouts) 

R2: the alarm or alert value ∈ [0, 1] 

ST: Safety Threshold ∈ [0.5, 1.0] 

α ∈ [0, 1] ,  = N (μ=0, σ2=1), 

K ∈ [−1, 1] 

 ≈ 0 (= 0.0001, say) 

n: number of sparrows in the swarm 

Output: xbest, fg. 
Initialize a population of n sparrows 

randomly within the feasible search do- 

main (In this study for doing so, the 

RAND() function in MS-Excel is used 

that returns an evenly distributed ran- 

dom real number ≥0 & <1, that uses 
the Mersenne Twister algorithm to gen- 

erate random numbers). 

x1 
ij=ai+RAND()*(bi-ai) [ai, bi   are the 

lower & upper search bounds of each 

decision variable xi of dimension j. 

1: t (iteration number) = 1; 

2: While (t < G) 

3 : Rank the fitness values and find the cur- 

rent best & current worst individual. 

4 : R2 = rand(1) 
: For i = 1 : PD 

: Use Eqn.-3 & Eqn.-6 to update spar- 

row’s location; 

: End for 

: Update the worst location found by the 

discoverer according to Eqn.-7; 

: For i = (PD + 1) : n 

: Use Eqn.-4 & Eqn.-8 to update spar- 

row’s location; 

: End for 

: For l = 1 : SD 

sition of a sparrow that is aware of danger; 

14 : End for 

: Get the location of new optimal spar- 

row; 

: If new location is better than previous, 

update it, else retain existing (greedy selec- 

tion / elitist strategy); 

17 : t = t + 1 

: End while 

: Return xbest, fg. 

A
ll 

R
an

do
m

 N
um

be
rs
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number in the range [0, 2π], which determines the individual movement distance; r3 and 

r4 are random numbers in [0, 2] and [0, 1], respectively. As per Ouyang C. et al (2021), 

r1 uses linear decline to balance the search scope, there are chances to get trapped into 

local optimal when optimizing high-dimensional complex functions. A nonlinear 

decline of r1 to balance local and global search was suggested by them: 

r1 = c + 
b 

exp4(t itermax )
4 +1 

-(10), where, b is fixed at 0.1 and c is a regulating factor 

suggested as c = 0.9 and they finally summarizes that “the introduction of improved 

sine-cosine guidance strategy reduces the blindness of sparrow searches, accelerates 

information exchange between individuals in the population and those in the best and 

worst positions, and makes followers more purposeful in their searches…The nonlinear 

decreasing parameters make the search more detailed and improve the convergence 

accuracy of the algorithm”. In the present study, r1 as per Eqn.-9 has been used. 
In the investigation reported herein, a modest population size of 50 (=n) sparrows 

has been assumed in the simulation runs, out of which 30% (PD=15) are assumed as 

producers (discoverers), 60% (S=30) as scroungers (followers) and 10% (SD=5) are 

assumed as scroungers perceiving danger (rangers, investigators or scouts). 

The program is written in Visual Basic for Applications at back-end with MS-Excel 

at front-end. Customised functions of the hard Benchmark Test Functions, Bishop’s 

FoS, LSSA functions (Eqn.-3 to Eqn.-9) and optimization subroutine of LSSA algo- 

rithm framework is written in VBA Code Editor modules. The optimization subroutine 

is called from Developer Tab of MS-Excel through macros and LSSA is run repeatedly, 

and all input and output data (variables) of each generation (cycle or iteration) are stored 

in multiple cells of a worksheet of any specific generation (Gi) and in consecutive work- 

sheets in chronological order (G1,G2,G3….,Gmax) for multiple iterations. Finally, the 

results are plotted graphically for a lucid understanding and critical comparison. 

 
5. Slope-Stability Problem Definition & the Search Procedure 

 
By the advent of computers, the use of optimization techniques in locating the critical 

slip surface has been a major topic for the researchers. Non-traditional optimization 

algorithms which are population based and stochastic in nature that discretizes the 

search space has proved to be efficient in locating the global optima. A problem cited 

by Spencer (1967) is chosen for analysis. The problem parameters, soil-data and search 

boundaries are spelt in Table-1 & depicted in Figure-1. 

In the search process, the three decision variables are the abscissa (CX) and ordinate 

(CY) of the circle center and the depth factor (Nd) of the circular failure arc. Based on 

a few trials, the feasible bounds of the decision or design variables, has been identified 

as: -0.10B  CX B, 1.05H  CY  3x1.05H, 0.80  Nd  1.25. The FoS (F), the ob- 
jective function to be optimized is a function of slip circle center and the radius of 

failure arc (R), where, R=f{CX, CY, NdH}. F is related to the total height of the slope 

H, the effective subsoil parameters c/, / and , the pore pressure ratio ru (= u/h), the 

individual slices of width bi, height hi and -the inclination of slice on the failure arc 

with the horizontal is given by Eqn.-11 (Bishop, 1955). Total number of slices consid- 

ered in the analysis is 15. To employ the novel LSSA algorithm, the objective function 

to be minimized is the FoS (F) and is given by: 
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 Table - 1. Slope geometry & soil properties 

B H β c/ / γH ru φ 
   

 

(m) (m)  (deg ) (deg ) 

60 30    26.565 0.02 0.50 40 

(-0.10B, 3.15H) (B, 3.15H) 

INITIAL FEASIBLE SEARCH SPACE      SUB-SOIL DATA 
 c/ 

Center 
H = 0.02

 
of /

 
= 40 deg. 

circle ub   u 
CX, CY ru = W = h = 0.50 

i c /   P tan/ 

R 
=   F + ( l- u)      F 

 
(-0.10B, 1.05H) R    (B, 1.05H) 

0.80 <= Initial Nd<= 1.25        
x 

i bi 

H=30 
N H 
d h

i
 

(0,0) 

I=  i  i 
i i 

i       
i I= 

0. 10B=6 B=60 i 
i    i       i

 

l i 
i=   i 

i i=     i 

F min.=0.99975764 
Fmax.=0.048345027 G1 to G50 

1.033996698 

0.909.9
09.9

097
.99579759677465472604 1.011.0110

7
.0
200
7902

1
95
1
2
25525225222

 

0.99   
975764 1.000925 

0.999 
975764 15 1.000925 

75764 1.000 
0.99975764 10 1. 

0
0.99975764 

5
 

.99975764 
0.99975764 0 

0.99975764 -5 
0.99975764 

0.99975764 -10 
0.99975764 
0.99975764 
0.99975764 
0.99975764 

0.99975764 
0.99975764 

0.999757 
0.909. 9 

Initia 
Di 

Figure 2. Slope-stability problem 
definition. 

Figure 3. Obj. Functionmin. [FoSmin] Vs. a design 
variable (abscissa of circle centre, CX). 

 

6. Imitating Sparrow Search: The Producer-Scrounger Model 
 

Figure-3 shows the typical variation of a design variables (CX) values against minimum 

objective function f(x) min. (F    ), in a LSSA search, captured in 50 successive cycles of 

a typical simulation run. The variation is plotted in a concentrically radiating circular 

scale, clockwise, with the f(x) min. corresponding to cycle G placed at the apex of the 

outermost circle. The process clearly demonstrates the stochastic nature of the algo- 

rithm. The global minimum FoS (Fmin.), the corresponding maximum fitness (Fmax.) in 

‘windowing technique’ is shown on top left of the figure. 

 

 

 

 

 

 

 
 

Figure 4 (a). Fast convergence of candidate solutions (Initial random G1 converges within G50). 
(b). Sparrow positions at global optima (Randomness maintained). 
(c). Random alarm value 

Figure-4(a) shows two plots in the same scale to compare the fast convergence of can- 

didate solutions. Initial random generation (G1) of candidate solutions (FoS), yields the 

maximum at 4.617 and minimum at 1.034, that converges to 1.048 and 0.9997 respec- 

tively after 50 iterations (G50), maintaining the randomness in population (Figure-4b). 
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Figure-4(c) shows the typical change of alarm (alert) value randomly during successive 

iterations. The nature of Safety Threshold (ST) and α graphs being very similar, are not 

reproduced here. 

 

 

 

 

 

 

 

 

Figure 5(a). Fast convergence of FoS with increasing generations (5 different simulation runs). 

Figure 5(b). Rapid improvement in final fitness landscape (five different simulation runs). 

 

 

 

 

 

 

 
Statistics of change depiction of ‘Factor of Safety’ in the search procedure 

Figure 5(c). Change in Av. (x̄ ) FoS with increasing generations [random initial, exploration & 
exploitation (global & local search), wide random (investigator phase) & final optimal]. 

Figure 5(d). Change in Std. Dev. () of FoS with increasing generations [random initial, exploration 

& exploitation (global & local search), wide random (investigator phase) & final optimal]. 

 

 

 

 

 

 

Figure 5(e). Change in the value of Worst candidate solution (FoS) with increasing generations. 
(Quick convergence within 10 iterations). 

Figure 5(f). Rapid relocation of Worst sparrow to the best part of the search space. 

Figure-5(a) & Figure-5(b) portrays the fast convergence of FoS and rapid increase 

of fitness of final solution (the optimal sparrow location and improvement in fitness 

landscape) with increasing generations. The FoSmin. value is captured at G24 of the 5th 

simulation run. Figure-5(c) & Figure-5(d) shows the change in average (Fav.=f(x)i/n) 

and standard deviation [f(x)i] of FoS values respectively with increasing generations 

from initiation to final convergence through the global and local search procedure 

displaying the stochastic nature of the algorithm. Figure-5(e) depicts the change in the 

value of worst candidate solution with increasing generations. The power of the 

algorithm drives the worst objective function (FoSworst) to near optimal values within 

10 iterations, preserving its heuristic character. Figure-5(f) portrays the rapid relocation 

of the worst sparrow, to the best part of the search space with potential food source with 

increasing generations. Figure-6 portrays the fast random movement of candidate 
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Figure 7. Comparison of results 

75   85   95 

 

 

 

solutions to the best part of the search space with increasing generations. It is observed 

that initial deterministic search space turns out heuristic at the immediate next; thereby 

taking a quick shift towards the best part of search space. In the present case, modest 

convergence could be achieved in G30 and fine convergence at G50. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Comparison of results 

 

7. Conclusions 
 

Diverse aspects of LSSA, an artificial intelligent population-based algorithm is pre- 

sented. From the simulation results it emerged that LSSA has the ability to get out of 

the local minimum and can efficiently be used for multivariable, multimodal function 

optimization. The spectrum of application area of LSSA is widespread since it has the 

inherent potential of optimizing any multi-dimensional and multi-modal function. Mul- 

tivariable functions; both continuous and discontinuous can be programmed. Function 
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Figure 6. 2-D plots of the 3 design variables (CX, CY, Nd). Plots of CX Vs. CY & CX Vs. Nd: 
The artificial intelligent character of the algorithm is clearly evident. Fast movement of solu- 
tions to best part of the search space as generation cycle increases [a-G1, b-G15, c-G30, d-G50]. 
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value evaluations at discrete points only enable it to handle non-differentiable functions 

at ease. Typical trials with 50 cycle run produced fine convergence. 

A typical soil-slope investigated has revealed that minimum FoS to be about 7% less 

than that of a directed grid search (Spencer, 1967) and slightly less than that of GA 

(Saha, 2011a), hybrid GA-SA (Saha, 2011b), Big Bang-Big Crunch (Saha, 2012), Ar- 

tificial Bee Colony (Saha, 2014) algorithm. Moreover, it is 13% less than that obtained 

by variational method (Narayan et al, 1976). 

 

8. Appendix 
 

In mathematical optimization, the Rosenbrock function (Howard H. Rosen- 

brock, 1960) is a non-convex function and a classic optimization problem (also 

known as the second function of De Jong). It is also called Rosenbrock valley 

or Rosenbrock banana function. The global minimum is inside a long, narrow, 
parabolic shaped flat valley. The function has the following definition: 

f (x) = 
n −1 

100(x 
i=1 

 

 
i+1 − x 2 )2   

+ (1 − x )2 . To find the valley is trivial, however 

convergence to the global optimum is difficult and hence this problem is pre- 

ferred frequently by researchers to test the performance of optimization algo- 

rithms. The test area is usually restricted to hypercube: -2.048  xi  +2.048; 

where, i=1,2,3,….n. It has a global minimum of f(x) = 0, obtainable at xi =1 

(i=1,2,3,…..n). 

 
Figure 8. 3-D graph of Rosenbrock function.   Figure 9. f(x)imin.= Rosenbrock Functionmin 

Vs. a design variable, x1. 

In the current study, the 3D version of Rosenbrock function (Figure-8) is 
explored, as the slope-stability problem is typified by 3 variables: CX, CY, Nd. 
Figure-9 to Figure-14 unfold the powerful features of the learning sparrow 
search algorithm, as captured in the path to optimization and fast yet robust 
convergence of this difficult benchmark test function. The graphs are self-ex- 
planatory, and an in-depth scrutiny of the graphs reveals the powerful features 
of the algorithm. The convergence is steady and fast and it never gets trapped 
into local optima. In all simulation runs it is noticed that the powerful algorithm 
adjusts the fitness landscape to the best part of the search space within about 30 
iterations and by and by refines the candidate solution swarm as the iteration 
cycle increases. 
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Figure 10. Defined convergence to the best food source (global optimization) captured in 5 sim- 
ulation runs of LSSA (a) Objective Function (Rosenbrock Function) & (b) Its Fitness {Fi = 
1/{1+f(xi)} in traditional context [At Opt., f(xi)≈0, Fi≈1]. [Steady & fast global convergence]. 

 

 

 

 

 

 

 

 

Figure 11. Exponential decrease of Average 
value (x̄ ) of Rosenbrock function 

[random initial, exploration & exploitation 
(discoverer & follower phase), wide random 
(investigator phase) & final optimal]. 
[Steady & defined convergence]. 

Figure 12. Exponential decrease of Standard 

Deviation, f(x) value of Rosenbrock function 
during the entire process of LSSA. 

[Steady and defined convergence]. 

 

 

 

 

 

 

 

 

Figure 13. Random change in Worst values of 
the decision variables of Rosenbrock function 
through the entire process of LSSA. 

[The WORST values of the 3 decision variables 
converges to optimal (xi≈1) after about 80 runs 
of search space exploration & exploitation 
(global & local search)] 

Figure 14. Rapid exponential relocation of 
Worst Objective Function (Rosenbrock) 
value to best part of search domain with in- 
creasing generations. 

[Within 148 runs, worst Rosenbrock function 
value steadily converges]. 
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