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Abstract. The maximum dry density and optimum moisture content are the com- 

paction parameters of soil, determined by modified and standard proctor tests. 

The modified and standard proctor tests are heavy and light compaction tests. In 

this research, the factor affecting the compaction parameters and the estimation 

of heavy compaction parameters from light compaction parameters has been 

studied. The input parameters G, S, FC, 𝐷60, 𝐷50, 𝐷30, 𝐷10, 𝐶𝑢 and 𝐶𝑐, are used 

to develop the regression models. Furthermore, Pearson's product-moment cor- 

relation coefficient depicts multicollinearity between gravel content and D10 for 

maximum dry density in both compaction conditions. Also, the coefficient of 

curvature has no relationship with compaction parameters. The results show that 

the index parameters (𝐷60, 𝐷50, 𝐷30, 𝐷10, 𝐶𝑢 and 𝐶𝑐) estimate the maximum dry 

density of soil better than other parameters (G, S, FC). However, the estimation 

of optimum moisture content is less accurate than maximum dry density for 

heavy and light compaction tests. The regression analysis between heavy and 

light compaction parameters shows that the regression models estimate the heavy 

compaction parameters with a correlation coefficient of more than 0.95 using 

light compaction parameters. Finally, this study concludes that the light compac- 

tion parameters of granular soil can estimate the heavy compaction parameters 

with acceptable results. 

 
Keywords: Granular soil, Modified proctor test, Standard proctor test, Regres- 

sion analysis 

 

1 Introduction 
 

The geotechnical parameters such as gradational, consistency limits, strength, and com- 

paction parameters help to understand the behaviour of soils used in any civil engineer- 

ing project [20]. The compaction parameters are optimum moisture content and maxi- 

mum dry density, determined using standard and modified proctor tests. The standard 

and modified proctor tests are light and heavy compaction methods. The modified proc- 

tor test requires more blows than the standard proctor test. The compaction test is per- 

formed to determine the optimum moisture content and maximum dry density of soil. 

However, both the procedures are time-consuming and tedious. Therefore, several in- 

vestigators have used different methodologies to compute the optimum moisture con- 

tent and maximum dry density for time-saving. These methodologies are associated 

with statistics and artificial intelligence. 
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Salim et al. (2022) have employed the artificial neural network approach to predict the 

compaction parameters using the different field parameters [15]. The authors have used 

backpropagation algorithms, namely Levenberg-Marquardt (LM), Bayesian Regulation 

(BR), Ratios Graded with Adaptive Learning Rate (GDA), Resilient (RP), and Graded 

Origin with Momentum (GDM). The authors have observed that the LM backpropaga- 

tion algorithm-based ANN model has outperformed the other models with the MSE of 

0.002263 for bulk density and 0.005112 for cone index. Also, the LM backpropagation 

algorithm-based ANN models have achieved a performance (R2) of 0.986 and 0.967 in 

predicting the bulk density and cone index. Finally, the authors have concluded that the 

artificial neural network (ANN) predicts the compaction parameters better than the 

mathematical/ statistical model. Yousif et al. (2022) have mapped a relationship be- 

tween the Atterberg's limits and compaction parameters of soil [20]. The authors have 

reported that the liquid limit has an excellent relationship with OMC and MDD of soil. 

Taffese and Abegaz (2022) have predicted the compaction parameters using the opti- 

mizable ensemble method (bagging regression tree, boosting regression tree) and arti- 

ficial neural network approaches based on machine learning [17]. The authors have 

observed that the optimizable ensemble method (OEM) has outperformed the artificial 

neural network with a performance (R2) of 0.56 in predicting the OMC of soil. On the 

other hand, the artificial neural network has outperformed the OEM model with a per- 

formance (R2) of 0.25 in predicting the MDD of soil. V Hohn et al. (2022) have devel- 

oped empirical models to compute the compaction parameters of soil [19]. The authors 

have reported that the models have predicted OMC and MDD with a COD of 0.761 and 

0.763, respectively. The authors have developed the empirical models using gravel con- 

tent, sand content, fine content, liquid limit, plastic limit, and specific unit weight of 

soils. Finally, the authors have validated the OMC and MDD models by comparing the 

models available in the literature survey and concluded that the proposed models pre- 

dict the compaction parameters better than the available models in the literature survey. 

Maqsoud (2022) has derived a simple relationship to estimate the OMC and MDD of 

soil [12]. The authors have developed the relationship using the consistency parameters 

of 56 compacted clay liners. Furthermore, the authors have validated the relationship 

using consistency parameters of 44 compacted clay liners. Haupt and Netterberg (2021) 

have mapped a relationship between experimentally determined soaked CBR, unsoaked 

CBR, OMC, and MDD for standard and modified proctor test efforts [9]. Jalal et al. 

(2021) have employed OMC, and MDD models based on GEP and MEP approaches 

using 195 datasets [10]. However, the authors have developed these models using clay 

fraction, specific gravity, plastic limit, and plasticity index. In addition, the authors have 

developed MLR models, compared them with GEP & MEP models, and concluded that 

the GEP models had outperformed the MLR and MEP in predicting MDD and OMC 

of soil, respectively. The authors have concluded that the gravel content is the most 

influencing parameter in predicting the compaction parameters of soil. Othman (2021) 

has constructed the deep neural network (ANN) to predict the compaction parameters 

of soil [13]. The authors have studied the impact of activation functions, the number of 

neurons, and the number of hidden layers in predicting OMC and MDD of soil. The 

authors concluded that the optimum prediction of compaction parameters is affected by 

the selected hyperparameters of the neural network. Also, the authors have concluded 

that the hyperbolic tangent activation is better than the linear and logistic activation 

functions. The authors have used grain size distribution, plastic limit, and liquid limit. 
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Özbeyaz and Söylemez (2020) have predicted compaction parameters using a sup- 

port vector machine and decision tree [14]. The authors have carried out the study with 

126 datasets. The authors have found that the polynomial SVM models have predicted 

OMC and MDD better than other SVM models (R=0.93). On the other hand, the deci- 

sion tree regression models have predicted OMC and MDD with a performance of 0.73 

and 0.44, respectively. The study reported that the multiple input parameters enhance 

the model's performance. In the published work, the polynomial SVM models devel- 

oped by input parameters (G, S, FC, LL) have outperformed the decision tree models. 

Ardakani and Kordnaeij (2019) have used GMDH type neural network and genetic al- 

gorithm to predict the compaction parameters [1]. The authors have predicted OMC 

and MDD of soil with the performance of 0.92 and 0.9 using the GMDH neural net- 

work. Gurtug et al. (2018) have predicted compaction curves and characteristics of the 

soil [6]. Taha et al. (2018) have predicted maximum dry density and optimum moisture 

content of stabilized soil using artificial neural networks [18]. 

Farooq et al. (2016) have successfully derived regression equations to compute the 

compaction parameters using LL, PI, and compaction energy parameters [4]. Bera and 

Ghosh (2011) have employed the regression models in predicting OMC and MDD of 

fine-grained soils [2]. The authors have concluded that the compaction energy, specific 

gravity, LL, and grain size play a vital role in predicting the OMC and MDD of soil. 

Günaydın (2009) has mapped a comparative study between statistical analysis and 

ANN while predicting the compaction parameters of soil [5]. The author has reported 

that the ANN models of OMC and MDD developed using input parameters FG, S, G, 

LL, and PL have achieved better performance predicting OMC (R2=0.893) and MDD 

(R2=0.836) of soil. Günaydın also found that ANN predicts the compaction parameters 

better than regression approaches. Di Matteo et al. (2009) have estimated the modified 

compaction parameters of fine-grained soil [3]. The authors have suggested regression 

equations to predict the compaction parameters, which is useful in designing trench 

fills, landfill liners, earth dams, and road embankments. Sinha and Wang (2008) have 

computed soil compaction parameters using an artificial neural network [16]. The au- 

thors have used 55 soil samples to carry out the published study. The developed models 

have predicted the OMC and MDD with a performance of more than 0.92. Gurtug and 

Sridharan (2004) have studied the effect of compaction energy on the compaction char- 

acteristics of fine-grained soil [7]. The authors have successfully derived the equations 

to predict the compaction parameters using compaction energy for the modified proctor 

test. 

The literature study illustrates that several investigators have employed regression 

and artificial intelligence techniques to compute the compaction parameters to save 

time. Many researchers have derived linear, polynomial, and logistic regression equa- 

tions to predict the compaction parameters of soil. On the other hand, many researchers 

have constructed artificial neural network models to estimate the OMC and MDD of 

soil. Still, the investigators have not studied the relationship between gradational pa- 

rameters and compaction parameters of the modified proctor test. In addition, the re- 

searchers have not mapped a relationship between compaction parameters of standard 

proctor test and modified proctor test. As per the outcomes of the literature study, the 

present research has the following aims: 

• To draw a relationship between input parameters (G, S, FC, D60, D50, D30, D10, 

CU & CC) and compaction parameters (OMC & MDD) of standard and modified 
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proctor tests. Also, predict the OMC and MDD for standard and modified proc- 

tor test parameters using the same input parameters. 

• To draw a heat diagram using Pearson's product-moment correlation coefficient 

for standard and modified proctor tests. 

• To map a relationship between standard and modified proctor test compaction 

parameters to predict the OMC and MDD of soil for the modified proctor test. 

• To construct a nomograph for the direct prediction of compaction parameters of 

the modified proctor test. 

• To determine the impact of input parameters in predicting the compaction pa- 

rameters for the modified proctor test by performing the Cosine Amplitude Sen- 

sitivity Analysis (CASA). 

 
2 Data Compilation 

 
The present research has been carried out using the published datasets of Khuntia et al. 

(2015). The authors have reported 110 datasets of coarse-grained soil [11]. The datasets 

contain gravel (G), sand (S), fine content (FC), particle size at 60% passing (D60), par- 

ticle size at 50% passing (D50), particle size at 30% passing (D30), particle size at 10% 

passing (D10), coefficient of uniformity (CU), coefficient of curvature (CC), compaction 

parameters (OMC & MDD) of standard and modified proctor test of coarse-grained 

soils. However, a dataset consists of several columns and rows, which makes studying 

datasets difficult. Therefore, a descriptive statistic for the dataset is drawn, as shown in 

Table 1. 

 

Table 1. Descriptive Statistics for the compaction datasets 

 

Particulars Min Max Mean Kurtosis Skewness StDev CL 

G (%) 0.00 5.00 1.06 1.78 1.21 1.17 0.22 

S (%) 50.00 100.00 88.50 1.96 -1.67 11.66 2.20 

FC (%) 0.00 46.00 10.44 1.77 1.63 11.50 2.17 

D60 (mm) 0.11 1.00 0.36 1.68 1.52 0.22 0.04 

D50 (mm) 0.09 0.80 0.27 2.45 1.69 0.17 0.03 

D30 (mm) 0.04 0.43 0.16 1.82 1.28 0.08 0.02 

D10 (mm) 0.01 0.21 0.09 0.03 0.48 0.04 0.01 

CU 1.38 11.76 4.55 1.38 1.49 2.52 0.48 

CC 0.43 2.14 0.95 4.52 1.97 0.32 0.06 

MDDM (g/cc) 1.63 2.11 1.85 -0.39 0.38 0.11 0.02 

OMCM (%) 8.00 15.50 10.79 0.64 0.87 1.54 0.29 

MDDS (g/cc) 1.55 2.00 1.75 -0.42 0.42 0.11 0.02 

OMCS (%) 10.50 18.50 13.59 0.10 0.76 1.80 0.34 

* MDDM & OMCM are modified, and MDDS & OMCS are standard proctor parame- 

ters 
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The Pearson's product-moment correlation coefficient has been calculated to determine 

the relationship between input and output of standard and modified proctor test param- 

eters. The correlation coefficient value ±0.81 to ±1.0, ±0.61 to ±0.80, ±0.41 to ±0.60, 

±0.21 to ±0.40, and ±0.0 to ±0.20 demonstrates the very strong, strong, moderate, weak 

and no relationship between input and output parameters [8]. The heat diagrams for 

standard and modified proctor test parameters have been drawn, as shown in Fig. 1 and 

2. 

 
 

Fig. 1. Heat diagram presenting correlation coefficient for SPT parameters 

 
 

Fig. 2. Heat diagram presenting correlation coefficient for MPT parameters 
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Fig. 1 illustrates that MDD very strongly correlates with the coefficient of uni- 

formity. Also, sand and fine content moderately correlate with maximum dry density. 

Furthermore, the gravel content, D60, D50, and D10, weakly correlate with the maximum 

dry density of the standard proctor test. In addition, optimum moisture content moder- 

ately correlates with the coefficient of uniformity. Moreover, the gravel, sand, and fine 

content, D60, and D50, weakly correlate with the optimum moisture content of the stand- 

ard proctor test. On the other hand, Fig. 2 demonstrates that the maximum dry density 

of the modified proctor test very strongly correlates with the coefficient of uniformity. 

The sand and fine content have a moderate relationship with the maximum dry density 

of the modified proctor test. Also, the uniformity coefficient has a moderate relation- 

ship with optimum moisture content. The rest of the parameters have weak to no rela- 

tionship with the OMC of the modified proctor test. However, the comparison shows 

that the modified proctor test compaction parameters have a better relationship with 

input parameters than the standard proctor test parameters. 

In the present study, the total datasets have been divided into 90 training and 20 

testing datasets. The selected twenty testing datasets are given in Table 2. 

 

Table 2. Testing datasets collected from Khuntia et al. (2015) [11] 

 
G 

(%) 

S 

(%) 

FC 

(%) 

D60 

(mm) 
D50 

(mm) 
D30 

(mm) 
D10 

(mm) 
CU CC 

MDDM 

(g/cc) 
OMCM 

(%) 
MDDS 

(g/cc) 
OMCS 

(%) 

0 57 43 0.16 0.1 0.055 0.021 7.62 0.90 2.04 9.5 1.93 12 

0 71 29 0.2 0.16 0.08 0.021 9.52 1.52 1.96 9 1.86 12 

2 96 2 0.4 0.3 0.21 0.11 3.64 1.00 1.91 10.5 1.82 13 

0 95 5 0.24 0.2 0.13 0.082 2.93 0.86 1.87 10 1.76 13 

2 96 2 0.43 0.31 0.21 0.15 2.83 0.69 1.83 11 1.73 14 

0 98 2 0.20 0.18 0.11 0.09 2.23 0.67 1.70 13 1.62 16 

0 83 17 0.18 0.17 0.1 0.07 2.57 0.79 1.72 11.5 1.59 14.5 

0 94 6 0.2 0.15 0.1 0.08 2.50 0.63 1.78 10.5 1.70 13 

2 96 2 0.48 0.36 0.21 0.15 3.20 0.61 1.83 10 1.73 12.5 

5 93 2 0.3 0.26 0.2 0.15 2.00 0.89 1.74 9.5 1.65 12.5 

2 82 16 0.2 0.17 0.1 0.06 3.33 0.83 1.83 12 1.73 16 

3 52 45 0.16 0.09 0.04 0.017 9.41 0.59 2.08 9.5 1.99 10.5 

0 83 17 0.21 0.19 0.11 0.05 4.20 1.15 1.77 11.5 1.69 15 

0 94 6 0.19 0.15 0.11 0.08 2.38 0.80 1.76 12.5 1.67 15.5 

2 96 2 0.5 0.37 0.21 0.15 3.33 0.59 1.82 9.5 1.71 12 

0 100 0 0.2 0.19 0.12 0.09 2.22 0.80 1.65 15.5 1.55 18.5 

0 64 36 0.3 0.19 0.062 0.03 10.00 0.43 2.04 9 1.94 11.5 

2 96 2 0.4 0.3 0.2 0.13 3.08 0.77 1.86 10.5 1.76 13.5 

0 95 5 0.24 0.2 0.12 0.08 3.00 0.75 1.83 10 1.73 12.5 

2 96 2 0.43 0.31 0.21 0.16 2.66 0.65 1.78 10.5 1.70 13 
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3 Methodology 
 

In the present research, six cases are developed to predict the compaction parameters 

for standard and modified proctor tests. However, each parameter, gravel, sand, fine 

content, D60, D50, D30, D10, CU, and CC, plays a vital role in predicting the compaction 

parameters of coarse-grained soil. Therefore, it has been decided to predict the com- 

paction parameters for standard and modified proctor tests. Moreover, a case is also 

included to predict the OMC and MDD for the modified proctor test using compaction 

parameters of the standard proctor test. Thus, seven cases are developed in the present 

study, as shown in Table 3. 

 

Table 3. Possible case for predicting OMC and MDD of soil 

 

Case No Input Parameters 
  Output  Model ID  

MDD OMC MDD OMC 

Case 1 G, S, FC SPT SPT MD 1 MC 1 

Case 2 G, S, FC MPT MPT MD 2 MC 2 

Case 3 D60, D50, D30, D10, CU, CC SPT SPT MD 3 MC 3 

Case 4 D60, D50, D30, D10, CU, CC MPT MPT MD 4 MC 4 

Case 5 G, S, FC, D60, D50, D30, D10, CU, CC SPT SPT MD 5 MC 5 

Case 6 G, S, FC, D60, D50, D30, D10, CU, CC MPT MPT MD 6 MC 6 

Case 7 OMCS, MDDS MPT MPT MD 7 MC 7 

 
Table 3 shows that the seven models have been developed to compute each maxi- 

mum dry density and optimum moisture content for the proctor tests. The maximum 

dry density and optimum moisture content models are MD 1 to MD 7 and MC 1 to MC 

7, respectively. Furthermore, the following equations for OMC and MDD models are 

derived from the regression analysis while training the models. 

 
MD 1 = G*0 – S*0.0219 – FC*0.0183 + 3.8763 R = 0.4547 (1) 

MD 2 = G*0 – S*0.0242 – FC*0.0206 + 4.2029 R = 0.4536 (2) 

MD 3 = D60*0.2139 + D50*0.1518 – D30*0.8353 + 

D10*0.3521 + CU*0.0293 + CC*0.0308 + 1.5675 
R = 0.8578 (3) 

MD 4 = D60*0.3428 – D50*0.0598 – D30*0.6644 + 

D10*0.1663 + CU*0.0302 + CC*0.0246 + 1.6723 
R = 0.8717 (4) 

MD 5 = G*0 – S*0.0051 – FC*0.0023 + D60*0.4103 + 

D50*0.0658 – D30*1.1038 + D10*0.1663 + 

CU*0.0208 + CC*0.0612 + 2.0108 

 
R = 0.8739 

 
(5) 

MD 6 = G*0 – S*0.0063 – FC*0.0039 + D60*0.5230 – 

D50*0.1276 – D30*0.9477 + D10*0.5591 + 

CU*0.0223 + CC*0.0546 + 2.241 

 
R = 0.8842 

 
(6) 

MD 7 = MDDS*0.9844 – OMCS*0.0012 + 0.1465 R = 0.9720 (7) 
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MC 1 = G*0 + S*0.4901 + FC*0.4396 – 34.385 R = 0.4664 (8) 

MC 2 = G*0 + S*0.5177 + FC*0.4757 – 40.004 R = 0.5154 (9) 

MC 3 = – D60*4.4287 + D50*13.25 – D30*20.137 + 

D10*10.412 – CU*0.5306 + CC*1.6395 + 14.807 
R = 0.6554 (10) 

MC 4 = – D60*2.5163 + D50*10.7 – D30*19.907 + 

D10*11.962 – CU*0.4738 + CC*1.6685 + 11.561 
R = 0.6679 (11) 

MC 5 = G*0 + S*0.1786 + FC*0.1042 – D60*10.033 + 

D50*15.469 – D30*11.691 – D10*1.8003 – 

CU*0.2865 + CC*0.7267 – 1.2734 

 
R = 0.7147 

 
(12) 

MC 6 = G*0 + S*0.2725 + FC*0.2245 – D60*7.1036 + 

D50*11.646 – D30*10.092 + D10*1.9114 – 

CU*0.2694 + CC*0.7526 – 14.322 

 
R = 0.7247 

 
(13) 

MC 7 = – MDDS*1.0947 + OMCS*0.7676 + 2.272 R = 0.9490 (14) 

 

4 Results and Discussion 
 

In the present work, the maximum dry density and optimum moisture content of SPT 

and MPT have been computed for coarse-grained soil using regression analysis. Also, 

a comparative study has been mapped between the performance of OMC and MDD 

models. The performance of developed models for SPT and MPT is computed in terms 

of root mean square error (RMSE), mean absolute error (MAE), and coefficient of de- 

termination (R2). The results of OMC and MDD for standard and modified proctor tests 

are discussed below. 

 
4.1 Prediction of Maximum Dry Density 

A total of seven models, MD 1, MD 2, MD 3, MD 4, MD 5, MD 6, and MD 7, have 

been employed in the present study to predict the maximum dry density of coarse- 

grained soil for the standard and modified proctor tests. The description of the models 

is given in Table 3. The common input parameters have been used to predict the maxi- 

mum dry density of coarse-grained soils, and the test performance of the models has 

been compared in the present study. Twenty coarse-grained datasets have tested the 

developed models. However, models MD 1, MD 3 & MD 5 have predicted MDD for 

SPT, and models MD 2, MD 4 & MD 6 have predicted MDD for MPT. The perfor- 

mance comparison has been drawn between models MD 1, MD 3, MD 5, and MD 2, 

MD 4, and MD 6, respectively. The performance of the models has been shown in Fig. 

3 to Fig. 6. 
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Fig. 3. Comparison of MDD for SPT and MPT using models MD 1 and MD 2 

 
Fig. 3 demonstrates that model MD 1 has predicted MDD for SPT with the RMSE 

of 0.2297 g/cc, MAE of 0.0514 g/cc, and R of 0.8497 (R2 of 0.5658). Similarly, model 

MD 2 has predicted MDD for MPT with the RMSE of 0.1986 g/cc, MAE of 0.0444 

g/cc, and R of 0.8793 (R2 of 0.5726). 

 

 

 

Fig. 4. Comparison of MDD for SPT and MPT using models MD 3 and MD 4 

 
Fig. 4 illustrates that model MD 3 has predicted MDD for SPT with the RMSE of 

0.2297 g/cc, MAE of 0.0514 g/cc, and R of 0.8497 (R2 of 0.722). In addition, model 

MD 4 has predicted MDD for MPT with the RMSE of 0.1986 g/cc, MAE of 0.0437 
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g/cc, and R of 0.8793 (R2 of 0.7731). Furthermore, models MD 5 and MD 6 have been 

developed using G, S, FC, D60, D50, D30, D10, CU & CC and have predicted MDD for 

SPT and MPT. The results of models MD 5 and MD 6 are shown in Fig. 5. 

 

 

 
Fig. 5. Comparison of MDD for SPT and MPT using models MD 5 and MD 6 

 
Fig. 5 depicts that model MD 5 has predicted MDD for SPT with the RMSE of 

0.2109 g/cc, MAE of 0.0472 g/cc, and R of 0.8677. Similarly, model MD 6 has pre- 

dicted MDD for MPT with the RMSE of 0.1902 g/cc, MAE of 0.0425 g/cc, and R of 

0.8956. 

 
 

 

Fig. 6. Comparison of MDD for MPT using model MD 7 
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Fig. 6 shows that model MD 7 has predicted the maximum dry density for the modified 

proctor test with the RMSE of 0.01559 g/cc, MAE of 0.0115 g/cc, and R of 0.9945 (R2 

= 0.989). The following points are mapped while predicting the maximum dry density 

for the standard and modified proctor tests. 

• Models MD 1 and MD 2 are developed and trained by the common input pa- 

rameters (G, S, FC). However, model MD 2 has predicted the MDD for MPT 

better than model MD 1 (MDD prediction model for SPT). Model MD 2 has 

predicted maximum dry density with a COD of 0.5726. 

• In addition, models MD 3 and MD 4 have been developed and trained by the 

common input parameters (D60, D50, D30, D10, CU, CC). The performance com- 

parison presents that model MD 4 has computed the MDD for MPT with a COD 

of 0.7731, which is better than model MD 3. 

• Furthermore, models MD 5 and MD 6 have been constructed and trained by both 

input parameters (G, S, FC, D60, D50, D30, D10, CU, CC) and found that model 

MD 6 has outperformed the models MD 5, MD 2, and MD 4 with a COD of 

0.8021. 

• The performance comparison of models MD 2, MD 4, and MD 6 demonstrate 

that the number of gradational parameters increases the performance of the re- 

gression model. Also, the gradational parameters predict maximum dry density 

for MPT better than SPT. 

• In addition, the standard proctor test compaction parameters (model MD 7) have 

predicted the MDD for MPT with a COD of 0.989, which is comparatively 

higher than models MD 2, MD 4, and MD 6. 

 

4.2 Prediction of Optimum Moisture Content 

Similarly, seven models (MC 1 to MC 7) have been developed to predict the optimum 

moisture content for standard and modified proctor tests, and the performance of the 

models has been compared. 

 

 
Fig. 7. Comparison of OMC for SPT and MPT using models MC 1 and MC 2 
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Fig. 7 demonstrates that model MC 1 has predicted OMC for SPT with the RMSE 

of 5.3959%, MAE of 1.2066%, and R of 0.589 (R2 of 0.3469). Similarly, model MC 2 

has predicted OMC for MPT with the RMSE of 4.5707%, MAE of 1.022%, and R of 

0.5317 (R2 of 0.2827). 

 
 

 
Fig. 8. Comparison of OMC for SPT and MPT using models MC 3 and MC 4 

 
Fig. 8 illustrates that model MC 3 has predicted OMC for SPT with the RMSE of 

5.007%, MAE of 1.1196%, and R of 0.6637 (R2 of 0.4405). Similarly, model MC 4 has 

predicted OMC for MPT with the RMSE of 4.7575%, MAE of 1.0638%, and R of 

0.5639 (R2 of 0.3179). 

 
 

 
Fig. 9. Comparison of OMC for SPT and MPT using models MC 5 and MC 6 
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Fig. 9 shows that model MC 5 has predicted OMC for SPT with the RMSE of 

4.8874%, MAE of 1.0928%, and R of 0.7218 (R2 of 0.5210). Similarly, model MC 6 

has predicted OMC for MPT with the RMSE of 4.3153%, MAE of 0.9649%, and R of 

0.6557 (R2 of 0.4299). 

 

 

 
Fig. 10. Comparison of OMC for MPT using models MC 7 

 
Fig. 10 illustrates that model MC 7 has predicted OMC for MPT with the RMSE of 

1.3717%, MAE of 0.3067%, and R of 0.9592 (R2 of 0.9201). Furthermore, the follow- 

ing observations have been made in comparing the performance of models MC 1 to MC 

7. 

• The performance comparison shows that model MC 1 has predicted OMC for 

SPT with a COD of 0.3469, which is comparatively higher than model MC 2. 

• In addition, model MC 3 has outperformed model MC 4 in predicting OMC for 

SPT with a COD of 0.4405. 

• Moreover, model MC 5 predicts OMC for SPT with a COD of 0.521, compara- 

tively better than MC 6. 

• The performance comparison shows that the number of gradational parameters 

increases the performance and prediction of models. Model MC 1 has been de- 

veloped using G, S, FC, and model MC 3 has been constructed using D60, D50, 

D30, D10, CU, and CC. In addition, model MC 5 has been designed using G, S, 

FC, D60, D50, D30, D10, CU & CC and achieved higher performance (COD) than 

models MC 1 and MC 3. 

• On the other hand, model MC 7 has been employed using the standard proctor 

test compaction parameters. Model MC 7 has predicted OMC for MPT with a 

COD of 0.9201, which is comparatively higher than models MC 1, MC 3, and 

MC 5. 

• The standard proctor test compaction parameters are strongly related to modi- 

fied proctor test compaction parameters. 
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5 Sensitivity Analysis 
 

In the present work, the nonlinear sensitivity analysis has been performed using the 

Cosine Amplitude Sensitivity Analysis (CASA). The following equation is used to de- 

termine the sensitivity analysis for input parameters and compaction parameters of SPT 

and MPT (Ardakani et al., 2017). 

 
∑𝑛 (𝑋𝑖𝑐 ∗ 𝑋𝑗𝑘) 

𝑆𝑆 = 
𝑐=1 

√∑𝑛 𝑋2 ∑𝑛 𝑋2 
𝑐=1     𝑖𝑐 𝑐=1   𝑗𝑘 

 
(15) 

 
Where Xic is input parameters G, S, FC, D60, D50, D30, D10, CU & CC, and Xjk is output 

parameter MDDM, MDDS, OMCM, and OMCS of coarse-grained soil. The value near 1 

shows the strong relationship between the pair of datasets. The sensitivity for compac- 

tion parameters of SPT and MPT Using equation 15 is shown in Fig. 11. 

 

 

 
Fig. 11. Cosine amplitude sensitivity analysis for SPT and MPT parameters 

 
Fig. 11 illustrates that the coefficient of curvature and sand content are the most 

influencing input parameters in predicting the compaction parameters of coarse-grained 

soil using SPT and MPT. Also, Fig. 11 demonstrates that input parameters D60, D50, 

D30, D10, CU, and CC are less influencing factors than sand content. 

 
6 Model Implication 

 
The sensitivity analysis reveals that the coefficient of curvature and sand content influ- 

ence the prediction of the compaction parameters for SPT and MPT. Therefore, nomo- 

graphs have been drawn to directly predict SPT and MPT compaction parameters for 
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coarse-grained soil with more than 50% sand content. Fig. 12, 13, 14, and 15 are the 

nomographs for predicting MDDS, OMCS, MDDM, and OMCM directly, respectively. 
 

 

 
Fig. 12. Nomograph for predicting MDD of SPT 

 

 

 
Fig. 13. Nomograph for predicting OMC of SPT 
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Fig. 14. Nomograph for predicting MDD of MPT 

 

 

 
Fig. 15. Nomograph for predicting OMC of MPT 

 

7 Conclusions 
 

The present research demonstrates the relationship between gradational parameters and 

compaction parameters. The compaction parameters of SPT and MPT have been pre- 

dicted using the gradational parameters. The following conclusions are mapped as per 

the outcomes of the present research – 
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• Pearson's product-moment correlation coefficient demonstrates that the MDD 

and OMC of both proctor tests are very strongly (1.0>R<0.81)) and moderately 

(0.6>R<0.41) related to the uniformity coefficient. 

• The gradational parameters predict the maximum dry density for the modified 

proctor test better than MDD for the standard proctor test. Furthermore, the re- 

gression models' performance has increased with increasing input parameters. 

The performance of models MD 5 and MD 6 is more than models MD 1, MD 2, 

MD 3, and MD 4. However, the models MD 5 and MD 6 have been developed 

using G, S, FC, D60, D50, D30, D10, CU, and CC. 
• On the other hand, the gradational parameters predict the optimum moisture 

content for the standard proctor test better than OMC for the modified proctor 

test. The optimum moisture content models MC 5 and MC 6 have outperformed 

the other models. 

• The compaction parameters of the standard proctor test are highly related to the 

compaction parameters of the modified proctor test. Therefore, models MD 7 

and MC 7 have predicted the OMC and MDD for the modified proctor test with 

a correlation coefficient of more than 0.95. 

• The sensitivity analysis reports that the sand content, D60, D50, D30, D10, CU, and 

CC parameters influence the compaction parameters of SPT and MPT. The com- 

parative study of sensitivity analysis for input parameters demonstrates that the 

sand content and coefficient of curvature are the most impacting parameters than 

the other input parameters. 

• The proposed nomograph for MPT and SPT can be used directly to predict the 

maximum dry density and optimum moisture content of coarse-grained soil. 

Finally, the present research concludes that a better prediction of OMC and MDD of 

the modified proctor test can be achieved using compaction parameters of the standard 

proctor test instead of gradational parameters. 

 
Abbreviations & Notations 

 
G – Gravel Content CBR – California Bearing Ratio 

S – Sand Content GEP – Gene Expression Programming 

FC – Fine Content SVM – Support Vector Machine 
D60 – Particle Size at 60% Passing R – Coefficient of Correlation 
D50 – Particle Size at 50% Passing LL – Liquid limit 
D30 – Particle Size at 30% Passing PI – Plasticity Index 
D10 – Particle Size at 10% Passing PL – Plastic Limit 

CU – Coefficient of Uniformity CL – Confidence Level at 95% 

CC – Coefficient of Curvature MD – Model 

LM – Levenberg-Marquardt Algorithm SPT – Standard Proctor Test 

BR – Bayesian Regulation Algorithm MPT – Modified Proctor Test 

GDA – Gradient Descent with Adaptive 

Learning Algorithm 

MEP – Multivariate Expression Pro- 

gramming 

RP – Resilient RMSE – Root Mean Square Error 

GMD – Gradient Descent with Momen- 
tum 

GMDH – Group Method of Data Han- 
dling 
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ANN – Artificial Neural Networks MDDM – MDD for MPT 

R2/ COD – Coefficient of Determination OMCM – OMC for MPT 

OMC – Optimum Moisture Content MDDS – MDD for SPT 

MDD – Maximum Dry Density OMCS – OMC for SPT 

OEM – Optimizable Ensemble Method MAE – Mean Absolute Error 

MD - Model  
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