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Abstract. In the recent past, more focus has been given to the practical 

utilization of Artificial Neural Networks (ANN) in solving diverse 

geotechnical engineering prob- lems. The present study mainly aims to 

evaluate liquefaction potential for Visakha- patnam city based on IS 1893 

Part-1 2016 method using an artificial neural network. Earlier researchers 

have developed back propagation artificial neural networks to predict the 

liquefaction potential of subsoil and concluded that modeling of any com- 

plex relationship between seismic, soil parameters and liquefaction potential 

is possi- ble with neural networks. These models are reported to be simpler 

and more reliable than conventional methods of evaluating liquefaction 

potential. 

 

In the above context, an attempt has been made on a total of 10 boreholes data 

in the city premises of Visakhapatnam at different locations, which spreads 

over the coast- line. The most critical input parameter identified in the 

modelling of the network is the Standard Penetration N-Value. The data set in 

the model was trained, validated, and tested in the ratio of 60:20:20. The final 

results showed that neural networks are a powerful tool in predicting the 

occurrence of liquefaction potential. These predictions are almost 90 % 

similar with an acceptable confidence level to the IS 1893 Part-1 2016 

method. 

 

 
Keywords: Liquefaction, Artificial Neural Networks, saturated sands, Earthquakes, 

SPT N Value. 
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1 INTRODUCTION 

 

Liquefaction is a phenomenon that mainly occurs when saturated fine sands and 

silts are subjected to earthquake or dynamic loading. During this phenomenon, the 

saturated cohesion less soils lose their strength completely due to increased pore wa- 

ter pressure rapidly [1-4]. The phenomenon has been widely observed worldwide 

after the Niigata 1964 and Alaska 1964 earthquakes in Japan. Liquefaction causes 

devastating effects on infrastructure projects like foundation and settlement-related 

problems, lateral spreading of embankments, sand boils and ground oscillations, etc. 

Since the 1970s, various researchers have conducted much research and proposed 

methods to forecast the occurrence of liquefaction based on field and Laboratory test 

data. It was found that there are certain limitations to using laboratory test data in 

predicting the liquefaction potential of soils. One of the main drawbacks of laboratory 

test results is that the results do not take into consideration of actual soil properties 

like fabric, soil structure, past strain history and over consolidation [5]. Another major 

drawback is that laboratory equipment is too costly, tedious and time-consuming. 

Analytical techniques such as the finite element method are often hampered because 

these techniques need a lot of parameters to accurately model complex geotechnical 

engineering problems such as liquefaction [6]. These drawbacks are overcome by 

using the field test data from the SPT test, CPT test, and other field tests that are often 

quite commonly used for analyzing the liquefaction potential of soils. Seed and Idriss 

method [7] was the most popular method proposed based on field data and they sug- 

gested a simplified method that considers all factors that influence the liquefaction. 

Iwasaki et al. [8] proposed a technique based on liquefaction resistance and potential 

factor for the evaluation of liquefaction susceptibility of the soils. Idriss and Boulan- 

ger [9] presented several potentially significant correlations and recommendations 

associated with seismic-induced soil liquefaction. But still, these empirical and semi- 

empirical methods also have some limitations due to the complexity of the issue and 

uncertainty in soil parameters. 

 
To overcome above-said limitations and constraints, artificial neural networks 

(ANNs) techniques have been evolved. Within a short time, ANN's applications have 

widened across all disciplines of science and engineering. These techniques are more 

reliable than traditional empirical and statistical methods for certain reasons. The 

Artificial Neural Networks train and learn from the data given to them as input and 

build a strong relationship among them to get a precise output even though the fun- 

damental relationships are unknown. The use of ANNs in the field of geotechnical 

engineering commenced in the early 1990s by Goh [10] and Ghaboussi and Sidarta 

[13]. Afterward, ANN has received significant attention worldwide from many re- 

searchers to solve complex geotechnical problems. 

 
Initially, Goh [10] prepared ANN Model based on SPT test data gathered from 

different places in different countries, and later, this work extended to CPT test data 

[11] for evaluation of liquefaction susceptibility of soils. Afterward, many of the re- 

searchers Ural and Saka [14], Hanna et al. [15], Tung et al. [16], Baziar and Nilipour 

[17], also used ANNs models for the prediction of liquefaction occurrence in soils. 

Farrokhzad et al. [18] prepared the liquefaction microzonation map for the Babol city 
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based on Seed and Idris's (1983) method using ANN based on field tests of 30 bor- 

holes. Some studies were done based on laboratory test results in ANN to predict 

liquefaction [20, 22]. Kim Young-su [20] used the ANN model to estimate the lique- 

faction CSR of sandy soils by experimental laboratory data. 

 

2 ARTIFICIAL NEURAL NETWORKS 
 

Neural Networks is a tool allows for solving problems that are complex and un- 

solved [6-7]. Neural networks work in the same as manner as human brains by taking 

past experiences and measurements to solve issues and face situations. Neural net- 

works develop a system called neurons. Neural Networks are basically divided into 

two types supervised and unsupervised. A supervised network develops models that 

help diagnose patterns, assume predictions and implement decisions based on the 

inputs taken and present outputs that have been learned. There are many types of su- 

pervised networks, namely Back propagation networks, Generalized Regression 

Neural Network and Probabilistic neural networks. An unsupervised network catego- 

rizes a set of patterns without displaying how to classify them in advance. This net- 

work system works based on Clustering Patterns. An example of an unsupervised 

network is Kohonen Networks. None of the supervised or unsupervised networks 

gives an accurate or correct answer when the patterns are incomplete, and data is defi- 

cient. 

 
In general, the simple neural network contains three different layers. The first layer 

is called the Input layer, which receives the data from outside as input parameters. 

The layer which gives output in the form of classifications and predictions is called 

the output layer. The layer between the input and output layers is termed as a hidden 

layer. Sometimes the hidden layers are more than one based on the requirement. A 

typical neural network diagram is shown in Fig.1. Basically, a neural network opera- 

tion has done in two phases, the first one is the training or learning phase and the 

second one is the recall or retrieval phase. In the first phase, the data is supplied to the 

network to train or learn, and the learning phase is highly time-consuming yet seeks 

the best performance. The retrieval phase can be rapid once the network is trained 

because processing can be distributed. The network "learns" by adjusting the inter- 

connection weights between layers. 

 

 

 

Input 
 

 

 

 

 

 
 

Input  Hidden layer Output 

Fig.1 Artificial Neural network 

Output 
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3 DATASET & PRE-PROCESSING 
 

A proper data set plays a vital role in solving any complex problem precisely using 

ANN. The data set should consist of the characteristics namely (1) reliability and (2) 

sufficient data covers all affected parameters [17]. In the present study 10 selected 

study areas are considered in the region of Visakhapatnam city in Andhra Pradesh 

state, India. Visakhapatnam is a coastal city comprising of saturated fine sands and 

silts at shallow depths. The data set required to constitute any ANN model should 

account for various factors that affect and complexity of the relationship among them. 

Hence study area, depth of soil, SPT N value, earthquake zone (Z2, Z3, Z4 &Z5), and 

earthquake magnitude intensity (5M, 5.5M, 6M &6.5M) are the parameters used as 

data set to develop a model in the present study. The data set is imported into the 

model as a dot CSV file and 592 data points are used for the study. 

 
Any model in ANN needs to have the training, validation and testing from the 

same data set. In the present study, the data is divided in 60:20:20 proportions, which 

means 60% data is used in training and 20% of data is used in validation and 20% 

data is used in testing for predication. After grouping the information, the data is pre- 

processed to avoid the dimensional dissimilarities [19] of different input parameters 

and to get better results. As the data set shall be wholly numerical, liquefaction is 

indicated with 1, and non-liquefaction is indicated with 0. 

 

4 RESULTS AND DISCUSSIONS 
 

ANN model is created using Python with Keras deep learning technique. The pro- 

posed network in the study is a single-layer feed-forward artificial network. The data 

is fed to the network by five input nodes/neurons and the output is represented by a 

single node. Generally, the number of nodes in the hidden layer is the average of 

nodes in the input and output layers. In this network number of epochs is 100. In each 

epoch, the whole training set is fed through the network and used to adjust the net- 

work weights. The input parameters considered for this study are study area, depth, 

SPT N value, zone, and earthquake intensity Magnitude. At the end of the training 

and validation process, 20% of data (randomly splitted from input data) is used for 

testing, and the results are presented in Table1. From the total input of 592 data 

points, 119 points are tested. Out of which 26 points are from study area1 and 

6,6,11,12,5,9,21,14,8 points form remaining study areas respectively for different 

conditions. In Table 1, the detailed tested data and comparisons of predicted and ob- 

served results are presented. 
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Table1.Comparion of model tested data with IS 1893 part-1 (2016) 

 

S.No Study 

Area 

Depth (N1)60 Zone Earthquake 

Magnitude 

IS 1893 part-1 

(2016) 

ANN 

Predicted 

1 SA-1 3 8 Z2 5.5 Non Liquefiable Non Liquefiable 

2 SA-1 3 8 Z3 6 Liquefiable Liquefiable 

3 SA-1 3 8 Z3 6.5 Liquefiable Liquefiable 

4 SA-1 3 8 Z5 5 Liquefiable Liquefiable 

5 SA-1 4.5 11 Z2 5 Non Liquefiable Non Liquefiable 

6 SA-1 4.5 11 Z4 5 Liquefiable Non Liquefiable 

7 SA-1 4.5 11 Z4 6.5 Liquefiable Liquefiable 

8 SA-1 4.5 11 Z5 6.5 Liquefiable Liquefiable 

9 SA-1 6 18 Z2 5.5 Non Liquefiable Non Liquefiable 

10 SA-1 6 18 Z4 6.5 Liquefiable Liquefiable 

11 SA-1 6 18 Z5 5.5 Liquefiable Liquefiable 

12 SA-1 6 18 Z5 6.5 Liquefiable Liquefiable 

13 SA-1 7.5 14 Z3 5 Non Liquefiable Non Liquefiable 

14 SA-1 9 12 Z2 5 Non Liquefiable Non Liquefiable 

15 SA-1 9 12 Z2 5.5 Non Liquefiable Non Liquefiable 

16 SA-1 9 12 Z3 5 Non Liquefiable Non Liquefiable 

17 SA-1 9 12 Z3 5.5 Non Liquefiable Non Liquefiable 

18 SA-1 9 12 Z4 5 Non Liquefiable Non Liquefiable 

19 SA-1 9 12 Z5 5 Liquefiable Liquefiable 

20 SA-1 10.5 10 Z3 5 Non Liquefiable Non Liquefiable 

21 SA-1 10.5 10 Z5 5 Liquefiable Liquefiable 

22 SA-1 12 12 Z2 5.5 Non Liquefiable Non Liquefiable 

23 SA-1 12 12 Z3 5 Non Liquefiable Non Liquefiable 

24 SA-1 12 12 Z3 6 Non Liquefiable Non Liquefiable 

25 SA-1 12 12 Z4 5.5 Liquefiable Liquefiable 

26 SA-1 12 12 Z5 6 Liquefiable Liquefiable 

27 SA-2 4.5 14 Z2 6.5 Non Liquefiable Non Liquefiable 

28 SA-2 4.5 14 Z5 5 Liquefiable Liquefiable 

29 SA-2 6 18 Z3 6.5 Non Liquefiable Liquefiable 

30 SA-2 6 18 Z4 5 Non Liquefiable Non Liquefiable 

31 SA-2 6 18 Z4 6 Liquefiable Liquefiable 

32 SA-2 6 18 Z5 5.5 Liquefiable Liquefiable 

33 SA-3 2 13 Z2 5.5 Non Liquefiable Non Liquefiable 

34 SA-3 2 13 Z2 6.5 Non Liquefiable Non Liquefiable 
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35 SA-3 2 13 Z3 6.5 Non Liquefiable Liquefiable 

36 SA-3 2 13 Z5 5 Liquefiable Liquefiable 

37 SA-3 2 13 Z5 5.5 Liquefiable Liquefiable 

38 SA-3 3.5 17 Z5 5 Non Liquefiable Liquefiable 

39 SA-3 3.5 17 Z5 6.5 Liquefiable Liquefiable 

40 SA-4 3.5 8 Z2 5 Non Liquefiable Non Liquefiable 

41 SA-4 3.5 8 Z2 6 Non Liquefiable Non Liquefiable 

42 SA-4 3.5 8 Z4 6.5 Liquefiable Liquefiable 

43 SA-4 5 11 Z2 6 Non Liquefiable Non Liquefiable 

44 SA-4 5 11 Z2 6.5 Non Liquefiable Non Liquefiable 

45 SA-4 5 11 Z5 6 Liquefiable Liquefiable 

46 SA-4 5 11 Z5 6.5 Liquefiable Liquefiable 

47 SA-4 3.5 12 Z3 5 Non Liquefiable Non Liquefiable 

48 SA-4 6.5 12 Z3 6 Non Liquefiable Non Liquefiable 

49 SA-4 6.5 12 Z3 6.5 Non Liquefiable Non Liquefiable 

50 SA-4 6.5 12 Z5 5 Liquefiable Liquefiable 

51 SA-5 3.5 8 Z2 5.5 Liquefiable Liquefiable 

52 SA-5 3.5 8 Z2 6 Non Liquefiable Non Liquefiable 

53 SA-5 3.5 8 Z5 5.5 Non Liquefiable Non Liquefiable 

54 SA-5 5 11 Z2 5.5 Liquefiable Liquefiable 

55 SA-5 5 11 Z3 5 Non Liquefiable Non Liquefiable 

56 SA-5 5 11 Z3 5.5 Non Liquefiable Non Liquefiable 

57 SA-5 5 11 Z5 6.5 Non Liquefiable Non Liquefiable 

58 SA-5 6.5 12 Z2 5 Liquefiable Liquefiable 

59 SA-5 6.5 12 Z2 6 Non Liquefiable Non Liquefiable 

60 SA-5 6.5 12 Z3 5 Non Liquefiable Non Liquefiable 

61 SA-5 6.5 12 Z3 6.5 Non Liquefiable Non Liquefiable 

62 SA-5 6.5 12 Z4 5 Non Liquefiable Liquefiable 

63 SA-6 3 13 Z3 5 Non Liquefiable Non Liquefiable 

64 SA-6 3 13 Z3 6.5 Non Liquefiable Non Liquefiable 

65 SA-6 3 13 Z5 6.5 Non Liquefiable Liquefiable 

66 SA-6 4.5 15 Z3 5 Liquefiable Liquefiable 

67 SA-6 4.5 15 Z3 6.5 Non Liquefiable Non Liquefiable 

68 SA-7 1.5 2 Z2 6.5 Non Liquefiable Liquefiable 

69 SA-7 1.5 2 Z3 6 Liquefiable Non Liquefiable 

70 SA-7 1.5 2 Z4 5.5 Liquefiable Liquefiable 

71 SA-7 1.5 2 Z5 5.5 Liquefiable Liquefiable 
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72 SA-7 2.5 4 Z2 6.5 Liquefiable Liquefiable 

73 SA-7 2.5 4 Z5 5.5 Liquefiable Non Liquefiable 

74 SA-7 4.5 4 Z3 6 Liquefiable Liquefiable 

75 SA-7 4.5 4 Z4 5.5 Liquefiable Non Liquefiable 

76 SA-7 4.5 4 Z5 6.5 Liquefiable Liquefiable 

77 SA-8 3 11 Z3 6.5 Liquefiable Liquefiable 

78 SA-8 3 11 Z4 6 Non Liquefiable Liquefiable 

79 SA-8 4.5 10 Z2 6 Liquefiable Liquefiable 

80 SA-8 4.5 10 Z2 6.5 Non Liquefiable Non Liquefiable 

81 SA-8 4.5 10 Z3 6 Non Liquefiable Non Liquefiable 

82 SA-8 4.5 10 Z4 6 Non Liquefiable Non Liquefiable 

83 SA-8 4.5 10 Z5 5 Liquefiable Liquefiable 

84 SA-8 4.5 10 Z5 5.5 Liquefiable Liquefiable 

85 SA-8 6 7 Z2 6.5 Liquefiable Liquefiable 

86 SA-8 6 7 Z3 6.5 Non Liquefiable Non Liquefiable 

87 SA-8 6 7 Z4 6 Liquefiable Liquefiable 

88 SA-8 6 7 Z5 6 Liquefiable Liquefiable 

89 SA-8 8 9 Z4 5.5 Liquefiable Liquefiable 

90 SA-8 8 9 Z4 6 Non Liquefiable Liquefiable 

91 SA-8 8 9 Z5 6.5 Liquefiable Liquefiable 

92 SA-8 10 12 Z3 5.5 Liquefiable Liquefiable 

93 SA-8 10 12 Z3 6.5 Non Liquefiable Non Liquefiable 

94 SA-8 10 12 Z4 5 Non Liquefiable Liquefiable 

95 SA-8 10 12 Z4 6 Non Liquefiable Non Liquefiable 

96 SA-8 10 12 Z4 6.5 Non Liquefiable Liquefiable 

97 SA-8 10 12 Z5 5.5 Liquefiable Liquefiable 

98 SA-9 1.5 12 Z3 6 Liquefiable Liquefiable 

99 SA-9 1.5 12 Z3 6.5 Liquefiable Non Liquefiable 

100 SA-9 1.5 12 Z4 6 Liquefiable Liquefiable 

101 SA-9 1.5 12 Z5 5 Liquefiable Liquefiable 

102 SA-9 3 18 Z5 5 Liquefiable Liquefiable 

103 SA-9 3 18 Z5 5.5 Non Liquefiable Liquefiable 

104 SA-9 3 18 Z5 6.5 Liquefiable Liquefiable 

105 SA-9 4 3 Z2 6.5 Liquefiable Liquefiable 

106 SA-9 4 3 Z3 6 Liquefiable Liquefiable 

107 SA-9 4 3 Z3 6.5 Liquefiable Liquefiable 

108 SA-9 4 3 Z4 5 Liquefiable Liquefiable 



TH-11-034 

 

S.Eswara Rao and C.N.V Satyanarayana Reddy 

 

 

 

 

 

 

109 SA-9 6 19 Z3 6.5 Liquefiable Liquefiable 

110 SA-9 6 19 Z4 5 Non Liquefiable Liquefiable 

111 SA-9 6 19 Z5 5.5 Non Liquefiable Liquefiable 

112 SA-10 1.5 7 Z4 6 Liquefiable Liquefiable 

113 SA-10 3 6 Z3 5.5 Liquefiable Liquefiable 

114 SA-10 3 6 Z4 6 Liquefiable Liquefiable 

115 SA-10 6 7 Z2 6.5 Liquefiable Liquefiable 

116 SA-10 6 7 Z3 5.5 Non Liquefiable Non Liquefiable 

117 SA-10 6 7 Z3 6.5 Liquefiable Liquefiable 

118 SA-10 6 7 Z5 5.5 Liquefiable Liquefiable 

119 SA-10 7.5 8 Z5 6 Liquefiable Liquefiable 

 

Table2: Summary of observed and predicted values of selected study areas 

 

Study Areas Observed Values by IS  1893 part  1 (2016) 

(Non-Liquefaction-0 /Liquefaction-1 ) 

ANN Predicted 

Non Liquefaction 

ANN Predicted Li- 

quefaction 

SA-1 (26) 0 13 0 

 1 1 12 

SA-2(6) 0 2 1 

 1 0 4 

SA-3(6) 0 2 2 

 1 0 2 

SA-4(11) 0 6 0 

 1 0 5 

SA-5(12) 0 9 1 

 1 0 2 

SA-6(5) 0 2 2 

 1 0 1 

SA-7(9) 0 0 0 

 1 3 6 

SA-8(21) 0 6 4 

 1 0 11 

SA-9(14) 0 0 3 

 1 1 10 

SA-10(8) 0 1 0 

 1 0 7 

Total 0 41 13 

 1 5 60 
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From Table 2, it is observed that the model predicted 41 non-liquefaction points as 

non-liquefaction points and 13 non liquefaction points as liquefaction points. Similar- 

ly, five liquefaction points as non-liquefaction points, and 60 liquefaction points as 

liquefaction points. Five liquefaction points predicted as non-liquefaction points are 

noticed as critical among all predictions. From Table 2, the percentage accuracy of 

ANN predictions for all study areas are represented in Fig.2. From the results, it is 

observed that for study areas 4 and 10, the observed and predicted results are 100% 

similar and for study areas 1 and 5 the prediction accuracy is observed to be greater 

than 95%. For remaining areas the accuracy of prediction varied from 67% to 90% 

due to less training and testing data fed to the network. 
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Fig.2. Plot between % Accuracy of ANN predictions and Study Areas. 

 

5 SUMMARY AND CONCLUSIONS 
 

From the output results, it is observed that the developed model is capable enough to 

predict the liquefaction susceptibility of subsoil layers in Visakhapatnam city region. 

The input parameters viz. depth, SPT N value, seismic zone, and earthquake intensity 

Magnitude formed a strong correlation and effectively predicted the liquefaction po- 

tential of soils. The efficiency and accuracy of the prediction model is almost 90% 

and it can be further improved by feeding more input data. The predicted results are 

compared with standard simplified procedures and the predictions are within accepta- 

ble confidence level to the IS 1893 Part-1 (2016) method. Hence ANN models can be 

used as simpler and more reliable over the conventional methods of evaluation the 

liquefaction potential of subsoil layers. 
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