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Abstract. Increased recent application of geo-synthetic reinforced soil (GRS) 

walls as bridge abutments to support bridge beams over shallow foundations is 

pervasive in place of deep foundations. Understanding the behaviour of footing 

resting on the backfill of the GRS wall is necessary and finding out the bearing 

capacity of the footing is essential. Many researchers have calculated the bear-

ing capacity of the footing resting on GRS walls by using numerical analysis 

through various softwares. In the present study, numerical analysis is performed 

to estimate the effects of various factors, namely embedment depth of footing, 

angle of internal friction, offset distance of footing, width of footing, and length 

of reinforcement on bearing capacity. Consequently, an artificial neural network 

(ANN) is applied to predict the bearing capacity of the footing. For this, 190 da-

ta points collected from previous research articles and others processed in 

PLAXIS 2D software are used in the present analysis. A model equation for the 

determination of the ultimate bearing capacity of the footing resting on the GRS 

wall has been developed from the best fit ANN model. Finally, sensitivity anal-

ysis was performed to determine the order of importance of input parameters on 

the output parameter. 

Keywords: GRS Wall, Footing, Bearing Capacity, PLAXIS 2D, ANN. 

1 Introduction 

Geo-synthetic reinforced soil (GRS) has been successfully used to construct many 

earth structures, such as slopes, retaining walls, and embankments. In recent years, 

Bridge abutments have been increasingly constructed using GRS walls. Bulky gravity 

walls are usually employed to construct bridge abutments, which must be supported 

by piles or groups of piles. However, similar situations do not exist when GRS walls 

are used as bridge abutments, which is why GRS walls are preferable for such a struc-

ture. For embankments of bridge approaches, highways, and railways subjected to 

traffic loads, GRS walls are used as abutments to support bridge beams on the shallow 

footings placed directly on the backfill. The main benefits of this technology are that 

it eliminates pile foundations, thus lowering overall construction cost and decreasing 

bumps at bridge ends. As a result, it is essential to comprehend the behaviour of a 

footing resting on the GRS wall's backfill. To decrease the bridge span, footings are 

usually placed near to the wall facing. Furthermore, as the footing position changes, 

i.e., near or distant from the face of the wall, the load bearing capacity, and footing 
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settlement change, making the analysis difficult. So, finding out the bearing capacity 

of the footing is necessary. 

In this paper, the bearing capacity of the footing has been predicted by adopting an 

Artificial Neural Network (ANN). Numerical analysis has been done to evaluate the 

effect of parameters such as embedment depth of footing, angle of internal friction, 

offset distance of footing, width of footing, and length of reinforcement on bearing 

capacity. 

 

Fig. 1.Schematic illustration of GRS Wall 

2 Numerical Analysis 

PLAXIS 2D, a finite element program, was used to do the numerical analysis. This 

software can design geotechnical structures, such as dams, excavations, embank-

ments, and tunnels. The finite element analysis was carried out with 15-node triangu-

lar elements in planar strain conditions. The geometry of the structure, soil properties, 

and other required parameters for modeling were collected from the literature. The 

structure was modeled by variable parameters like offset distance of the footing from 

the face of the wall (D), embedment depth of the footing (h), the width of footing (B), 

length of reinforcement (L), and friction angle of backfill (ϕ) while all other parame-

ters were unchanged. In PLAXIS 2D software, force can be incorporated either by 

means of prescribed force or displacement. The footing has been kept on the wall by 

varying the parameters. Fine mesh has been used for every case to make the analysis 

easier and get instant results. The water table has been taken to be at the bottom sur-

face of the wall. Analysis gives the results in terms of pressure vs displacement. The 

external stability check for the wall has been done for every wall height, and they are 

a factor of safety against sliding, overturning, and bearing pressure. 

The footing with a larger offset distance on the GRS wall had a higher ultimate 

bearing capacity than the footing with a smaller offset distance. To attain the maxi-

mum value of ultimate bearing capacity, the footing that rests over the backfill of the 
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GRS wall should be neither too close nor too far away from the wall facing, according 

to the findings of this study. The footing ultimate bearing capacity was slightly in-

creased as the embedment depth was increased. The increase in the length of the rein-

forcement and friction angle of the backfill soil has given some improvement in the 

ultimate bearing capacity, while an increase in the width of the footing decreased the 

bearing capacity. 

    Fig. 2.Placing of the footing and Application of load       Fig. 3.Deformed mesh after loading 

3 Data Collection 

A total of 190 data points were collected from various published literature and numer-

ical analysis. 61 of the 190 were taken from published literature, as shown in Table 1, 

and the remaining 129 were obtained by performing numerical analysis. The offset 

distance of the footing, embedment depth of footing, width of the footing, friction 

angle of the backfill, length of the reinforcement, and the related measured ultimate 

bearing capacity of the footing are all included in each data set. 

Table 1.Sources of data collected from the literature 

Source Number of data obtained 

Rahmaninezhad, S. M., et al (2020) 14 

Srivastava, A., et al (2021) 5 

Sakleshpur, V. A., et al (2017) 8 

Xiao, C., et al (2016) 30 

Kakrasul, J. I. (2018) 2 

Xie, Y., et al (2019)  

 

2 
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Normalization of data has been done to eliminate inaccurate or missing data and 

enhances prediction accuracy. All data in this study was scaled down between 0 and 

1.  

                                xnormalized value = 
𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒−𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
                               (1) 

Where xposition value represents positional value of a specific parameter, xnormalized value 

represents mapped normalized value, xmaximum value and xminimum value were maximum and 

minimum input values of a specific parameter, respectively. Each variable has an n 

suffix to denote its normalized value. The creation of ANN models was done using 

normalized input and output data points. 

4 Determination of Model Input Parameters 

Selection of the optimal number of input parameters is required to be done. 

The five input parameters considered for creating ANN models are as follows:  

1. Offset distance of the footing from the face of the wall (D) 

2. Embedment depth of footing (h) 

3. Width of the footing (B)  

4. Friction angle of the backfill (ϕ) 

5. Length of the reinforcement (L) 

5 Division of Data 

The entire database must be split into two groups: training and testing. The training 

set purpose is to help the ANN model understand the underlying patterns in the data, 

whereas the testing set purpose is to evaluate the trained model, determine the error 

between the actual and predicted output, and help in model optimization. 

The data set was divided into four different combinations for training and testing 

algorithms: 90–10 % (90–10 validation), 80–20 % (80–20 validation), 70–30 % (70–

30 validation), and 60–40 % (60–40 validation). In the 70-30 validation method, 70% 

of the database (133 records) has been assigned to the training set, while the remain-

ing 30% (57 records) has been assigned to the testing set. Other validation techniques 

used similar approaches, and a total of 16 neural network models were developed. 

According to Shahin et al. [8], Statistical consistency has been maintained for both the 

training and testing sets, and the statistical parameters used for this purpose are mean 

and standard deviation; these parameter values of the data in both sets must be as 

close as possible. 
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TABLE 2.The statistical parameters for 70-30% validation 

Model Parameters 

and Data set 

Mean Standard 

deviation 

Maximum Minimum Range 

          ϕ      

Training set 

 

36.83 

 

12.78 

 

51 10 41 

Testing set  39.86 

 

10.46 

 

51 10 41 

          L (m)      

Training set 4.99 

 

1.85 

 

8 1.3 6.7 

Testing set  4.99 

 

1.76 

 

8 1.3 6.7 

          B (m)      

Training set 1.87 

 

0.95 

 

4 0.2 3.8 

Testing set  1.90 

 

0.98 

 

4 0.2 3.8 

          D (m)      

Training set 2.43 

 

2.11 

 

8 0 8 

Testing set  2.01 

 

1.95 

 

7 0 7 

          h (m)      

Training set 0.18 

 

0.33 

 

2 0 2 

Testing set  0.21 

 

0.45 

 

2.4 0 2.4 

       qu (kN/m2)      

Training set 266.67 

 

135.30 

 

692 11 681 

Testing set  266.32 

 

136.79 

 

670 13 657 
 

6 Development of ANN model 

ANN has been developed in MATLAB 2014a environment with two-layer feed-

forward back propagation neural network and Tan-sigmoid as a transfer function in 

both the hidden and output layers. The network has been trained using four different 

learning algorithms: Bayesian Regularization (BR), Levenberg-Marquardt (LM), 

Gradient descent with momentum (GDM), and Scaled conjugate gradient (SCG). 

6.1 Optimizing the Number of Hidden Neurons  

The optimal number of neurons in the hidden layer should be determined to get the 

best performance out of an ANN model. The neurons number in a hidden layer is 

important for determining network accuracy and the best architecture for an ANN 

model. The precision of output increases as the number of hidden neurons increases; 

however, more neurons can lead to overfitting of data, whereas fewer neurons can 

lead to underfitting. The formula (2i +1), where i is the number of input parameters, 

can be used to calculate the maximum number of hidden nodes suggested by Hecht-

Nielsen [4]. In this study, there are five input parameters. The ANN model with the 

lowest mean squared error (MSE) was chosen from among those created with a num-

ber of hidden neurons ranging from 1 to 11. 
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6.2 Building the Optimum ANN Model 

The Levenberg–Marquardt (LM) algorithm for 70-30% validation, with the six hidden 

neurons, has been obtained as the optimum ANN model. The architecture of the de-

veloped optimum ANN model with six hidden neurons and the variation of hidden 

neurons with mean square error has been given in Figure 4 and Figure 5, respectively. 

 

Fig. 4.Architecture of optimum ANN 5-6-1 Model 

 

 

 

 

 

 

 

 

 

  

Fig. 5.Graph between the Number of Hidden Neurons and MSE 

The following statistical performance functions have been used in this study to evalu-

ate the performance of ANN models: 

Mean Squared Error (MSE):   MSE =  
∑(𝑌𝑚−𝑌𝑝)2

𝑁
 

Root mean square error (RMSE): RMSE = √
∑(𝑌𝑚−𝑌𝑝)2

𝑁
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Coefficient of correlation (R):  R = √
∑𝑌𝑚

2−∑(𝑌𝑚−𝑌𝑝)2

∑𝑌𝑚
2  

Mean Absolute Error (MAE):   MAE =  
∑ ⎸𝑌𝑚−𝑌𝑝 ⎸

𝑁
 

Where Ym represents actual observed value, Yp is predicted output value, and N rep-

resents number of data points. The relative correlation and goodness of linear fit be-

tween the actual target values (Ym) and the predicted output values (Yp) are measured 

by the R. As a result, R should be as high as possible. MSE, RMSE, and MAE are 

error measures. These error values should be as low as possible. 

TABLE 3.ANN models statistical error values 

ANN Model 

Combinations 

 

Algorithms 

 

MSE 

 

R 

 

MAE 

 

RMSE 

Number 

of hidden 

neurons 

 

 

90-10% 

BR 0.01 0.876 0.0752 0.1 5 

LM 0.0095 0.890 0.0713 0.0974 9 

GDM 0.0097 0.863 0.0711 0.0984 8 

SCG 0.0115 0.842 0.0712 0.1072 7 

 

 

80-20% 

BR 0.0095 0.896 0.0708 0.0975 6 

LM 0.0098 0.868 0.0707 0.0989 8 

GDM 0.0099 0.880 0.0741 0.0994 11 

SCG 0.0096 0.899 0.0694 0.0979 9 

 

 

70-30% 

BR 0.0099 0.879 0.0749 0.0995 6 

LM 0.0089 0.884 0.0682 0.0943 6 

GDM 0.0098 0.883 0.0738 0.0989 10 

SCG 0.0095 0.909 0.0712 0.0974 6 

 

 

60-40% 

BR 0.0095 0.856 0.0735 0.0974 6 

LM 0.0093 0.871 0.0692 0.0964 10 

GDM 0.0128 0.834 0.0729 0.1131 7 

SCG 0.0095 0.874 0.0748 0.0974 10 

Table 3 indicates that the LM method with a 70–30% validation model gives the low-

est MSE, RMSE, and MAE values. As a result, it can be determined that the LM algo-

rithm with a 70–30% validation is the best of all the models considered. 

Table 4.Best Fit ANN model Performance Characteristics 

Data Set R MSE MAE 

Training set 0.884 0.0089 0.0682 

Testing set 0.879 0.0142 0.0913 
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Fig. 6.Fitting Curve between Target and Output            Fig. 7.Plot of mean square error versus 

values for LM algorithm (70–30% validation)                  the number of epoch for LM algorithm                                                                             

                                                                              (70-30% validation) 

7 Development of Equation to Predict  the Ultimate Bearing 

Capacity of Footing Resting on GRS Wall on the Basis of the 

Trained ANN Model 

The mathematical equation recommended by Goh et al. [3] that incorporates all of the 

independent input parameters, as well as the dependent output parameter, is – 

                           Y = ƒsigm{𝑏𝑜 + ∑ [𝑤𝑟ƒ𝑠𝑖𝑔𝑚
(𝑏ℎ𝑟 + ∑ 𝑤𝑖𝑟𝑋𝑖

𝑚
𝑖=1 )]ℎ

𝑟=1 }                        

(2) 

Where, 

ƒsigm = Sigmoid transfer function (Tan-sigmoid function in this case). 

wr = The weight of the connection between the hidden layer's r neuron and the output 

layer's neuron. 

bo = Output layer bias.  

bhr = Bias at the hidden layer's rth neuron. 

wir = The weight of the connection between the input variable i and the hidden layer's 

rth neuron. 

Xi = Input parameter. 

Y = Output parameter. 
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TABLE 5.The LM algorithm weights and bias for the ANN-5-6-1 model with 70–30% valida-

tion 

By putting the values of weights and bias shown in Table 5 in equation 2, the follow-

ing equations can be written, and these equations are used to determine the correlation 

of the output parameter with the input parameters. 

a = -1.416(L)n +1.1049(ϕ)n -0.8077(B)n+0.4837(D)n+0.1736(h)n+2.4499    (3) 

b = -0.5767(L)n -0.791(ϕ)n -0.8501(B)n -1.684(D)n -1.6252(h)n +1.0896    (4) 

c = -1.2491(L)n +0.0667(ϕ)n -1.5074(B)n -0.6751(D)n -0.393(h)n +0.196    (5) 

d = -0.403(L)n -0.0647(ϕ)n -0.8902(B)n -2.5701(D)n -0.2602(h)n -0.143     (6) 

e = 0.4348(L)n +1.1053(ϕ)n -1.7041(B)n -0.2979(D)n -0.6917(h)n -0.6603    (7) 

f = -1.6191(L)n +1.0965(ϕ)n -0.8339(B)n +2.1251(D)n -1.0491(h)n -3.4234    (8) 

Before substituting in the above equations, the input parameter values must be nor-

malized in the range [0, 1] 

x = - 1.3979 tanh(a) - 0.3636tanh(b) + 0.2233tanh(c) - 0.5612tanh(d) + 0.411tanh(e) -

1.6425tan(f) - 0.1718                      (9)  

Ultimate Bearing Capacity, qu (normalized) = tanh(x)           (10) 

The equation (10) has been de-normalized to equation (11), from which we can obtain 

the actual predicted ultimate bearing capacity (in kN/m2). 

Ultimate Bearing Capacity, qu (kN/m2) = Ymin + (Ymax – Ymin) tanh(x)     (11) 

Where Ymin and Ymax are the minimum and maximum values of Y, respectively, 

which can be taken from the dataset. 

Table 6.Bounds for the input and output parameters 

 L (m) ϕ B (m) D (m) h (m) qu (kN/m2) 

Maximum 8 51 4 8 2.4 692 

Minimum 1.3 10 0.2 0 0 11 

 

Hidden 

Neuron 

 

Input-Hidden Weight 

  Hidden-

Output 

Weight 

 

Bias 

 (L)n  (ϕ)n  (B)n  (D)n  (h)n  (qu)n Hidden Output 

1 -1.416 1.1049 -0.8077 0.4837 0.1736 -1.3979 2.4499  

 

-0.1718 
2 -0.5767 -0.7910 -0.8501 -1.6840 -1.6252 -0.3636 1.0896 

3 -1.2491 0.0667 -1.5074 -0.6751 -0.3930 0.2233 0.1960 

4 -0.4030 -0.0647 -0.8902 -2.5701 -0.2602 -0.5612 -0.1430 

5 0.4348 1.1053 -1.7041 -0.2979 -0.6917 0.4110 -0.6603 

6 -1.6191 1.0965 -0.8339 2.1251 -1.0491 -1.6425 -3.4234 
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Within the given limits, the equation (11) established for predicting Ultimate Bearing 

Capacity works well. Before employing the aforementioned equations, the maximum 

and lowest values of the input parameters given in Table 6 should be utilised to nor-

malise the input parameters. 

The developed equation will be helpful in saving time and cost (monetary and compu-

tational) associated with performing model tests and numerical simulations. 

8 Validation of ANN Model with PLAXIS 2D and Existing 

Literature Results 

TABLE 7.Comparison of the output values from ANN with the PLAXIS 2D and available 

literature values 

qu (kPa) value from litera-

ture and PLAXIS 2D 

qu (kPa) predicted value 

from ANN 

Absolute Error% 

373 371 0.45 

190 203 7.07 

315 323 2.64 

325 301 7.48 

203 189 6.97 

320 315 1.44 

266 307 15.43 

270 266 1.56 

351 339 3.51 

409 331 19.15 

143 126 11.58 

440 379 13.87 

455 389 14.6 

152 151 0.570 

200 184 8.11 

170 187 9.9 

100 112 11.76 

104 95 9.05 

It is noticed from Table 7 that the error is in the range of 0.5% to 20% which is ac-

ceptable. We can see that error getting increased with the bearing capacity. 

9 Calculation Procedure to find Out the Ultimate Bearing 

Capacity of the Footing resting on a Geo-synthetic Reinforced 

Soil Wall with a Numerical Example 

The following procedure can be adapted to determine the ultimate bearing capacity of 

the footing resting on a GRS wall from the derived model equation. 

A data set has been taken from numerical analysis results 
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Height of the wall (H) = 9 m 

Friction angle of the backfill (ϕ) = 35 

Length of the reinforcement (L) = 6.3 m 

Width of the footing (B) = 2 m 

Offset distance of the footing from the face of the wall (D) = 2 m 

Embedment depth of the footing (h) = 0 m 

Ultimate bearing capacity of the footing (qu) = 268 kN/m2 

Step 1: Normalize the given data using equation 1 in the range [0, 1] and the input 

parameter limits shown in Table 6. 

Table 8.Given and normalized data 

 (L)n (ϕ)n (B)n (D)n (h)n 

Given Data 6.3 35 2 2 0 

Normalized data 0.746 0.609 0.473 0.25 0 

Step 2: Substitute the normalized data into the equations (3) – (8) and calculate for a, 

b, c, d, e and f 

a = -1.4168(L)n + 1.1049(ϕ)n  - 0.8077(B)n + 0.4837(D)n + 0.1736(h)n + 2.4499  

   = 1.804    

b = -0.5767(L)n - 0.791(ϕ)n - 0.8501(B)n - 1.684(D)n - 1.6252(h)n + 1.0896   

   = -0.646     

c = -1.2491(L)n + 0.0667(ϕ)n - 1.5074(B)n - 0.6751(D)n - 0.393(h)n + 0.196  

   = -1.578     

d = -0.403(L)n - 0.0647(ϕ)n - 0.8902(B)n - 2.5701(D)n - 0.2602(h)n - 0.143   

   = -1.547     

e = 0.4348(L)n + 1.1053(ϕ)n - 1.7041(B)n - 0.2979(D)n - 0.6917(h)n - 0.6603  

   = -0.543     

f = -1.6191(L)n + 1.0965(ϕ)n - 0.8339(B)n + 2.1251(D)n - 1.0491(h)n - 3.4234  

  = -3.826 

Step 3: Substitute the calculated values of a, b, c, d, e, and f into equation (9) and 

solve for x. 

x = -1.3979tanh(a) - 0.3636tanh(b) + 0.2233tanh(c) - 0.5612tanh(d) + 0.411tanh(e) -  

1.6425tan(f) - 0.1718   

  = 0.4558 

Step 4: Now, put the value of x into equation (10) and calculate qu (normalized) 

Ultimate Bearing Capacity, qu (normalized) = tanh(x) 

                                                    = 0.4267 

Step 5: De-normalize the qu value by substituting in equation (11) with maximum and 

minimum values of qu taken from Table 6 

Considering Ymax = 692 kN/m2 and Ymin = 11 kN/m2 

Ultimate Bearing Capacity, qu (kN/m2) = Ymin + (Ymax – Ymin) tanh(x) 

                                             = 301kN/m2 
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The value of predicted ultimate bearing capacity obtained from equation (11) is 

301kN/m2. The data of the example has been obtained from a numerical analysis 

whose ultimate bearing capacity was 268kN/m2. As a result, the predicted error is 

12.31%, which is acceptable. 

10 Sensitivity Analysis 

To determine the importance of the input parameters in the prediction of the output 

parameter, a sensitivity analysis was performed. Garson's approach Goh [2], based on 

an optimised weight vector, was used to determine the influence of different input 

parameters on the output parameter. Connection weight values of the trained network 

for LM algorithm and 70–30% validation model are given in Table 5. A python code 

was used with Garson’s algorithm to find the relative significance of various input 

parameters.  

The analysis shows that the fourth parameter, the offset distance of the footing 

from the face of the wall D, has the greatest influence on the ultimate bearing capacity 

of the footing. The width of the footing is the second-factor influencing ultimate bear-

ing capacity. The friction angle of the backfill and footing embedment depth had the 

least impact on bearing capacity. 

  

Fig. 8.Histogram for Importance of input parameters 

11 Conclusion 

The Levenberg–Marquardt (LM) algorithm with the mean square error value of 

0.0089 and the corresponding correlation coefficient value of 0.884 for 70-30% vali-

dation model with six numbers of hidden neurons outperforms all other algorithms 

and validation models. The most influencing parameter in predicting the ultimate 

bearing capacity of the footing is offset distance (D), whereas the least influencing 

parameter is embedment depth (h) of the footing, according to sensitivity analysis. 
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Based on the best fit ANN model, a model equation has been developed to predict the 

ultimate bearing capacity of the footing resting on the GRS wall. Within the specified 

limits, the derived equation performs well. The numerical analysis study suggests an 

optimum offset distance for placing footing above the GRS wall is D = 2 to 4 m to get 

the maximum bearing capacity and least settlement. 
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