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Abstract. Static analysis of four – nodded thin rectangular plate element based 

on Kirchhoff theory resting on Pasternak foundation. All the deformation 
stiffness matrix of plate and subsoil are evaluated using finite element method. 
A Matlab code is developed for present formulation then convergence study is 
carried out, then validation done and then the static analysis of thin plates 
resting on Pasternak type foundations. The results, thus obtained, are compared, 
with the available results obtained by other researchers. Parametric study done 
and the maximum deflection, bending moment are presented in tabular and 
graphical forms. It is concluded that the effect of the soil coefficient on the 

static analysis of the plates on elastic foundation is generally larger than that of 
the aspect ratio. It behaves extremely well for thin plate, results are very close to 
exact solution and convergence rate is high.  

Key Words: Pasternak foundation, finite element, Shear parameter and sub-grade 

reaction.

1 Introduction 

 
 Analyses of plates on elastic foundations have wider applications in aerospace, civil 

and mechanical engineering. Developing more realistic foundation models and 

simplified methods to solve this complex soil-structure interaction problem are very 

important for safe and economical design. Majority of the problems cannot be solved 
by theoretical approach, led use the numerical techniques like sophisticated finite 

element method. 

In static analysis of plates resting on the elastic foundation using the Winkler model, a 

single parameter model neglects the shear deformations between closely spaced 

elastic springs. Winkler model main discrepancies are the discontinuity in the soil 

displacement between the soil under the structure and that outside the structure. To 

overcome the discrepancies of Winkler model two-parameter foundation models 

developed by Hetenyi [1], Filonenko Borodich [2] and Pasternak [3] provide for the 

displacement continuity of the soil medium by adding of a second spring which 

interacts with the first spring of the Winkler model. The mechanical modelling of 

plate-subsoil interaction problem is mathematically quite complex phenomenon and 

the response of sub-grade is depending upon by many factors. The analysis of plates 
resting on elastic foundations is the great interest of researcher and vast area of 
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various research studies. Mishra and Chakrabarti [4] investigated shear and contact 

effects on the behaviour of rectangular plates resting on tensionless elastic foundation 

using finite element method. They used a nine-nodded Mindlin plate element to 

account for transverse shear effects. Buczkowski and Torbacki [5], developed an 18- 

node isoparametric interface element of zero-thickness that account for shear 

deformation of the plate, details analyzed thick plates resting on two-parameter elastic 

foundation. Celik and Saygun [6] developed a finite element formulation for plates on 
elastic foundation incorporating the shear deformations in the behaviour of the plate, 

and the effect of subsoil is considered as a combination of elastic bending and shear 

deformation of the soil. Daloglu and Ozgan [7] developed an iterative method to 

determine the subsoil depth affected from the load on the plate resting on elastic 

foundation using stress distribution within the subsoil depending on the loading and 

dimension of the plate. Ozgan and Daloglu [8] investigate in details the effect of 

transverse shear strains on thin and the thick four-nodded and eight-nodded Mindlin 

plate resting on elastic foundation using modified Vlasov model. Turhan [9] studied 

in details thin plate resting on elastic foundation using modified Vlasov model using 

FEM. W.T. Straughan [10] studied in details thin plate resting on elastic foundation 

using modified Vlasov model using FDM. Ozgan and Daloglu [11] investigate in 

details the effect of shear strain on thick plate using a four-nodded and an eight-
nodded plate bending element based on Mindlin plate theory have been adopted for 

modeling the thick plates on elastic foundations using Winkler model incorporate 

transverse shear deformations. Buczkowski and Torbacki [12] developed the finite 

element technique that account for the material properties of soil and incorporate the 

surrounding effect outside the plate.  

In the present paper, a four-nodded thin rectangular plate resting on Pasternak 

foundations for static analysis using finite element method. For numerical integration 

Gauss-Legendre-type quadrature rule is used. This allows computation to be more 

accurate than other quadrature rule. Convergence rate, accuracy and applicability of 

the present formulation for static analysis of thin plate on Pasternak foundation are 

demonstrated through number of numerical examples. 
 

2    Methodology  

 
2.1 Pasternak model 

 

In this model, existence of shear interaction among the spring elements is assumed 

which is accomplished by connecting the ends of the springs to a plate that only 

undergoes transverse shear deformation. The load–deflection relationship is obtained 

by considering the vertical equilibrium of a shear layer. In this two-parameter model, 

the reaction of the foundation is determined by a vertical spring constant, k in 

combination with a shear parameter Gb, which interacts with the vertical springs. The 

values of k and Gb parameter can be determined by using a methodology given by 

Selvadurai (1979) [13] 

k =
Es(1 − vs)

H(1 + vs)(1 − 2vs)
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and Gb =
EsH

6(1 + vs)
  

Es, νs = Young’s modulus of elasticity and Poisson’s ratio of soil.  

H is the thickness of soil which corresponds to the end of the influence zone for the 

foundation based on Boussinesq’s method, H = 2B where B is the width of plate. 

Therefore the field equation in the domain, Ω, can be written as 

D∇4w + kw − Gb∇2w = q                                                                                                    (1)  

∇2= Laplacian operator =
∂2

∂x2
+

∂2

∂y2
; ∇4=

∂4

∂x4
+

2∂4

∂x4
+

∂4

∂y4
 

 

2.2 Finite element formulation 

 

It has four corner nodes and each node is associated with three degrees of freedom.  

                    
Fig. 1. PBR4 plate elements 

 

Length and width of the plate are 2a and 2b respectively. 

u(x, y, x) = −z
𝜕𝑤0

𝜕𝑥
; v(x, y, z) = −z

𝜕𝑤0

𝜕𝑦
; and w(x, y, z) = w0(x, y). 

It is further assumed that as, w(x, y, 0) = w(x,y).  

The displacements of the surface of the soil are equal to the displacements of the 

middle surface of the plate. 

The nodal displacement at ith node {δi}  = {wi (
∂w

∂x
)
i

(
∂w

∂y
)
i

}

T

 

 

The element displacement vector is defined as {𝑑𝑒} = {𝑑1 𝑑2  𝑑3  𝑑4}
𝑇  for four 

nodded elements. 

The element is based on thin plate theory. Hence, it is sufficient to prescribe variation 

of transverse displacement w on element region.  

The strain displacement relation for plane stress condition is given by 

 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤0

𝜕𝑥2
= −𝑧𝜒𝑥 ; 𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
; 𝜀𝑦𝑦 = −𝑧

𝜕2𝑤0

𝜕𝑦2
= −𝑧𝜒𝑦; 𝛾𝑥𝑦 =

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

𝛾𝑥𝑦 = −𝑧 (
∂2w0

∂xdy
+

∂2w0

∂xdy
) = −2𝑧

∂2w0

∂xdy
; 𝛾𝑥𝑦 = −z𝜒𝑥𝑦 𝑎𝑛𝑑 𝜀𝑧𝑧 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 

 

Hence, generalized curvatures are written as 
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{

𝜒𝑥

𝜒𝑦

𝜒𝑥𝑦

} =

[
 
 
 
 
 
 

𝜕2𝑤0

𝜕𝑥2

𝜕2𝑤0

𝜕𝑦2

2
∂2w0

∂xdy]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝜕2𝑁

𝜕𝑥2

𝜕2𝑁

𝜕𝑦2

2
∂2N

∂xdy]
 
 
 
 
 
 

{w0}; ∴  [𝐵𝑏𝑖] =

[
 
 
 
 
 
 

𝜕2𝑁

𝜕𝑥2

𝜕2𝑁

𝜕𝑦2

2
∂2N

∂xdy]
 
 
 
 
 
 

;  

 
[𝐵𝑏] = [𝐵𝑏1 𝐵𝑏2 ……… 𝐵𝑏12] for four nodded elements. 

 

Stresses are related to strain in terms of elasticity matrix for plane stress case is given 

by 

𝐶11 =
𝐸

(1 − 𝜈2)
 𝑎𝑛𝑑 𝐺 =

𝐸

2(1 + 𝑣)
; 𝐶22 = 𝐶11; 𝐶33 = 𝐶11; 𝐶12 = 𝑣𝐶11; 𝐶13 = 𝐶12; 

𝐶21 = 𝐶12; 𝐶23 = 𝐶12; 𝐶31 = 𝐶12; 𝐶32 = 𝐶12; 𝐶44 = 𝐺; ∴  [𝐶𝑏] = [
𝐶11 𝐶12 0
𝐶21 𝐶22 0
0 0 𝐶44

] ; 

[𝐷b] = ∫ z[Cb]

h

2

−
h

2

𝑑𝑧 ; [Db] =
Eh3

12(1 − ν2)
[

1 ν 0
ν 1 0

0 0
1 − ν

2

] 

[Db] is the Plate rigidity matrix. 

E = the modulus of elasticity of the plate, h = thickness of the plate, and  

ν = Poisson's ratio of the plate., 
𝐻𝑒𝑛𝑐𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 

[𝐾𝑏] = ∫ ∫ [𝐵𝑏]
𝑇[𝐷𝑏][𝐵𝑏]|𝐽|𝑑𝑠𝑑𝑡

1

−1

1

−1

                                                                            (2) 

Following usual steps, the bending is expressed as 

[𝐾𝑏] = ∑∑𝑊𝑖𝑊j|𝐽|[𝐵𝑏]
𝑇[𝐷𝑏][𝐵𝑏]

2

𝑖=1

 

2

j=1

 

From these equations, it is observed that full 2 × 2 Point Gauss-Legendre type 

quardature is adopted for bending stiffness. 

Considering a structural element which has a differential area ‘dA’ in contact with the 

foundation the lateral deflection of area ‘dA’ normal to the foundation is, w= [Nf]{d } 

The strain energy Ur in a linear spring is given by eq. =
1

2
𝑘𝑤2  

 𝑈𝑟 =
1

2
∫𝑘𝑤2 𝑑𝐴;  k is the soil parameter known as modulus of sub-grade reaction. 

𝐴𝑠 ‘𝑤’ 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑠𝑜 𝑤2 = 𝑤𝑇𝑤;𝑤2 = {𝑑}𝑇[𝑁𝑓]
𝑇
[𝑁𝑓]{𝑑} 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑈𝑟 =
1

2
∫𝑘{𝑑}𝑇[𝑁𝑓]

𝑇
[𝑁𝑓]{𝑑} 𝑑𝐴 =  

1

2
{𝑑}𝑇[𝐾𝑓]{𝑑} 

In which the foundation stiffness matrix for the element is,[𝐾𝑓] = ∫ 𝑘[𝑁𝑓]
𝑇
[𝑁𝑓] 𝑑𝐴 

[𝐾𝑓] = 𝑘𝑎𝑏 ∫ ∫ [𝑁𝑓]
𝑇
[𝑁𝑓]

1

−1

1

−1

𝑑𝑠𝑑𝑡𝑘 ∫ ∫ [𝑁𝑓]
𝑇
[𝑁𝑓]

1

−1

1

−1

|𝐽|𝑑𝑠𝑑𝑡                                    (3)  

If the problem deals with a plate on elastic foundation, [Nf] is identical to the shape 
function matrix [N] of the plate. 
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A typical sub-matrix for foundation parameter corresponding to i - th node is 

[𝐾𝑓𝑖] = 𝑘 ∑∑𝑊𝑖𝑊𝑗|𝐽|𝑁𝑖
𝑇𝑁𝑗

2

𝑗=1

; ∴ [𝐾𝑓] 

2

𝑖=1

= {𝐾𝑓1 𝐾𝑓2 ………… .𝐾𝑓12}
𝑇    

                     (4) 

Strain energy stored by foundation parameter ‘Gb’ is given by 

 

 
Fig.2. Equilibrium condition of differential beam element under foundation second parameter 

 

The length of a differential element ‘dx’in the deformed position, ‘ds’, can be 
expressed as 

𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑤)2 = 𝑑𝑥√1 + (
d𝑤

𝑑𝑥
)

2

 

𝑑𝑠 = 𝑑𝑥 [1 + (
𝑑𝑤

𝑑𝑥
)

2

]

1

2

= 𝑑𝑥 [1 +
1

2
(
𝑑𝑤

𝑑𝑥
)

2

] 

∴ 𝑑𝑠 − 𝑑𝑥 =
1

2
(
𝑑𝑤

𝑑𝑥
)

2

𝑑𝑥 

𝑈 =
1

2
∫ Gb(

𝜕𝑤

𝜕𝑥
)

2𝑎

−𝑎

𝑑𝑥 =
1

2
∫ Gb{𝑑}𝑇[𝑁𝑓′]

𝑇
[𝑁𝑓′]{𝑑}

𝑎

−𝑎

𝑑𝑥 =
1

2
{𝑑}𝑇[𝐾𝑒𝑥]{𝑑} 

𝑤ℎ𝑒𝑟𝑒  [𝐾𝑒𝑥] = ∫ Gb[𝑁𝑓′]
𝑇
[𝑁𝑓′]𝑑𝑥;  𝑆 = [𝑁𝑓′]

𝑎

−𝑎
; 

Similarly for Y − direction where  [Key] = ∫ Gb[Nf′]
T[Nf′]dy

b

−b

; R = [Nf′] 

∴ 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑠ℎ𝑒𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, Gb 𝑖𝑠 [𝐾𝑒] = Gb∬[𝑆𝑇𝑆 + 𝑅𝑇𝑅]𝑑𝐴 

[𝐾𝑒] = Gb𝑎𝑏∫ ∫ (
1

𝑎2
[
𝜕𝑁

𝜕𝑠
]
𝑇

[
𝜕𝑁

𝜕𝑠
] +

1

𝑏2
[
𝜕𝑁

𝜕𝑡
]
𝑇

[
𝜕𝑁

𝜕𝑡
])

1

−1

1

−1

𝑑𝑠𝑑𝑡 

A typical sub-matrix for second foundation parameter corresponding to i-th node is  

[𝐾𝑒𝑖
] = 𝐺𝑏 (∑∑𝑊𝑖𝑊𝑗|𝐽|

𝑑𝑁

𝑑𝑥 𝑖

2

𝑗=1

 

2

𝑖=1

+ ∑∑𝑊𝑖𝑊𝑗|𝐽|
𝑑𝑁

𝑑𝑦
𝑖

2

𝑗=1

 

2

𝑖=1

) 
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For four nodded elements, [𝐾𝑒] = [𝐾𝑒1 𝐾𝑒2 ……… . .𝐾𝑒12 ]                                        (5) 

Stiffness matrix of the elements[𝐾] = [𝐾𝑏] + [𝐾𝑓] + [𝐾𝑒]                                         (6)  

The element load vector for a plate due to transverse distributed load of q per unit 

area acting top of the plate 

{𝑓} = 𝑞 ∫ ∫ [𝑁]𝑇
1

−1

1

−1

|𝐽|𝑑𝑠𝑑𝑡 

. 𝐹𝑜𝑟𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑 {𝑓} = [𝑁𝑑]𝑇[𝐹] 
The element load matrix for n nodded plate due to transverse distributed load of q per  

𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒{𝑞𝑖} = 𝑞 ∑∑𝑊𝑖𝑊𝑗|𝐽|𝑁𝑖

2

𝑗=1

 

2

𝑖=1

 

Integration is carried out using 2 × 2 Gauss-Legendre integration. 

For  four nodded elements, {𝑓} = {𝑞
1
  𝑞

2
…………. 𝑞

12
}
𝑇    

                                 (7) 

Similarly a typical sub-matrix for foundation parameter corresponding to i - th node is 

𝐻𝑒𝑛𝑐𝑒 𝑜𝑏𝑡𝑎𝑖𝑛  [𝑥] = [𝐾]−1{𝑓}                                                                                             (8)     

 

3  Result and discussion 

 
3.1 Convergence study and test the formulation 

 

To ease comparison of results, the following dimensionless parameters are defined: 

1 Non dimensional maximum deflection wˉ =1000Dw/q˳a⁴; Maximum moment 

M=100M/q˳a² for uniformly distributed load, q₀ and deflection wˉ =1000Dw/Pa²; 

Maximum moment M=100 M/P for point load, P; 

2. Foundation parameter, Kw = (Ka⁴/D)¼;Ks = (Gba²/D)½. 

A square plate is considered first to test the present formulation and simultaneously a 
convergence study is performed taking Kw and Ks both 5. The mesh size of 14 × 14 

is decided for a reasonable result.  

 

3.2 Validation work 

 

This chapter starts with some comparisons with similar studies done by other 

researchers are made. The present method can be applied to static analysis of plate 

with various boundary conditions, including free-free.  

One example has been chosen from the study done by Ömer CİVALEK [14] for 

validation of the present formulation. A square plate for verification were taken h/a = 

0.005 and non-dimensional value of Kw⁴ = 200 and Ks² = 5, 10, 20. The non-dimensional 
central deflections and bending moment for SSSS plate with uniform loading listed in 

table 1 and have been compared with Ömer CİVALEK [14] show excellent 

agreement. 
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Table 1. Comparison of non-dimensional central deflections and bending moment in isotropic 
square plate subjected to uniform loading and resting on Pasternak foundation. 
 

a/b = 1 , a/h = 200 FULL UDL B.C. - SSSS, ν = 0.25 

THEORY Kw⁴ Ks² w (a/2,b/2) M (a/2,b/2) 

PS 200 5 2.2702 2.3789 

Ömer CİVALEK [19] 2.2640 2.4208 

PS 10 1.9777 2.0474 

Ömer CİVALEK [19] 1.8860 1.9876 

PS 20 1.5705 1.5918 

Ömer CİVALEK [19] 1.5700 1.6133 
     

 

3.3 Parametric study 

 

For parametric study the data has been taken as a/b = 1, 1.5, 2 and a/h =100 and Kw = 

3, 5, 7 Ks = 3, 4, 5. For limited space here present some of them. 

Figure 3, 4 shows the variation of maximum non-dimensional displacement parameter 

and maximum non-dimensional bending moment parameter with aspect ratio. It is 

observed from figure that the maximum displacement parameter and maximum 
bending moment parameter both decreases with increase of aspect ratio but it shows 

that aspect ratio greater than 1.5 maximum displacement parameter and maximum 

bending moment parameter both tends to stable with increase of aspect ratio. 

 

Fig. 3. The effect of aspect ratio on non-dimensional deflection of clamped plate subjected to 
UDL. 

 
Fig. 4. The effect of aspect ratio on non-dimensional moment of simply supported plate 

subjected to UDL. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 1.5 2

w
m

ax

a/b

Kw = 3

Kw = 5

Kw = 7

a/h = 100; B.C - CCCC; FULL UDL,  

Ks = 3;

0.0

0.2

0.4

0.6

0.8

1.0

1 1.5 2

w
m

ax

a/b

Kw = 3

Kw = 5

Kw = 7

a/h = 100; B.C - CCCC; FULL UDL,  

Ks = 4;

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 1.2 1.4 1.6 1.8 2

M
x

m
ax

a/b

Kw = 3

Kw = 5

Kw = 7

a/h = 100; B.C- SSSS; FULL UDL,  

Ks = 3;

0.0

0.5

1.0

1.5

2.0

2.5

1 1.2 1.4 1.6 1.8 2

M
x

m
ax

a/b

Kw = 3

Kw = 5

Kw = 7

a/h = 100; B.C- SSSS; FULL UDL,  

Ks = 4;



Ashis Kumar Dutta,  Debasish Bandyopadhyay and  Jagat Jyoti Mandal  

 

Theme 5  57 

Figure 5, 6 shows the variation of maximum displacement parameter and maximum 

bending moment parameter with foundation parameter in case of both uniform 

loading and point load. It is observed from figure that the maximum displacement 

parameter and bending moment parameter both Mx and My decreases with increases 

of foundation parameter but in case of free plate with point load is concave and other 

cases it is more or less convex. 

 

 
Fig. 5. The effect of foundation modulus on non-dimensional deflection of free plate subjected 
to point load at mid point. 

 
Fig. 6. The effect of foundation modulus on non-dimensional moment of free plate subjected to 
point load at mid point. 

 

From Figure 2-5 it is observed that the maximum displacement parameter and 

maximum bending moment parameter decreases with increase of constrains on the 

edges this shows that higher constraints on the edges increase the flexural rigidity of 
the plate and hence lower displacement and bending moment.  

 

4    Conclusions 

 
The accuracy and the efficiency of the element for different foundation parameter and 

different load cases and then a parametric study are performed. It is seen that this 
rectangular plate bending elements can be used effectively and efficiently for 

analyzing thin plates on elastic foundations under any type of load cases and 

boundary condition. The effect of foundation parameter on the displacement is larger 

for concentrated load case than for distributed load case, and this effect increases as 

h/a ratio increases for any foundation parameter. The observations indicate that the 
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effect of aspect ratio of plate on the behaviour of the plate bending is always larger 

for free plates. 

The presented examples show some of the advantages of the suggested approach for 

numerical solution of a plate on an elastic foundation. It gives opportunities for:  

1. Application of various loads at an arbitrary Point or a region on the plate; 

2. The approach can be performed on a thin plate effectively and efficiently; 

3. The plate and the soil medium stiffness can vary smoothly along the plate’s  
            length; 
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