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Abstract. Earlier researchers such as von Kármán, Mohr, Coulomb and Griffith 

did not con- template the strengthening of materials due to intermediate principal 

stress σ2. Böker and Handin et al. showed the strengthening effect of σ2 in marble, 

and in limestone, dolomite and glass, respectively. Murrell extended the Griffith’s 

criteria to its three-dimensional form residing in octahedral plane, and even included 

the uniaxial tensile strength of material. Afterwards, Nadai, Drucker and Prager, 

Bresler and Pister, and Wiebols and Cook and more included all the principal stresses 

in their respective criteria. In 1971, Mogi put the dubiety to rest by testing dolomite 

and trachyte in a high capacity true triaxial testing machine. Then, many researchers 

such as Lade and Duncan, Michelis, Takahashi and Koide, Smart, Haimson and 

Chang, Alexeev et al., Tiwari and Rao, He et al. and several others developed their 

own true triaxial testing machines and conducted their own experiments. This paper 

discusses this chronological and mathematical de- velopment of brittle failure criteria 

which describes the true stress state existing at the depths. Simultaneously 

comparative assessment is made to segregate the conditional nature of the failure 

criteria. These developments are pertinent to know how the underground brittle 

failure such as strainburst is perceived today. 

 

Keywords: brittle; fracture; true triaxial; principal stress; testing machine; failure. 

 
1 Introduction 

 
Studies pertaining to stresses around underground spaces and failure behaviour of 

rock mass is crucial to allow deformations in excavation stage and restrict the same 

after the construction of the structure is completed and commissioned. Hence there is a 

quintessential need of a functioning failure criterion. Geomaterials behave either in a 

brittle or ductile fashion when stressed under an external load. Based on this behaviour 

failure can be classified as either fracture (brittle material) or yielding (ductile material) 

behaviour. These failure criteria are in terms of stress or strain experienced by a de- 

forming body. In stress space, generally it is denoted that the major principal stress σ1 

is an implicit function of other two principal stresses, intermediate and minor principal 

stresses, σ2 and σ3 respectively, i.e. σ1 = f1(σ2, σ3) or f2(σ1, σ2, σ3) = 0, which are 

determined either theoretically, empirically, numerically or using tools such as fuzzy 

logic or machine learning. In general, rocks are tested for triaxial stress state, which is 

a special case wherein σ2 = σ3. However, it has been established that it is not always the 

case in any underground excavation. σ2 presents a strengthening effect on the overall 

stress state in the underground space [1–6]. 

mailto:arpan.nandy95325@gmail.com


TH-05-034 

2 

 

Arpan Nandy, K. Seshagiri Rao, Tanusree Chakraborty 

 

 

 

 

 

 
In geomechanics, positive convention is used for compression, hence negative con- 

vention is reserved for tensile forces, however in solid mechanics the notion is opposite. 

Hence the material under discussion has to be noted to avoid conflict of understanding. 

Usually, the failure is observed in rock mechanics when the specimen under compres- 

sion fails either in tension or shear. This failure can be either microscopic, which deals 

with crack mechanics, and other, macroscopic failure, which deals with load or energy 

carrying capacity of the structure in a whole. The microscopic failure criteria are devel- 

oped from the micromechanical failure models, which considers the initiation of cracks 

and its coalescence to form major cracks, or from continuum damage mechanics mod- 

els. The macroscopic failure criteria are based on the stress-strain response of the ma- 

terial, energy exchange (via, S-criterion, etc.), or empirical models and damage charac- 

teristics models. 

The failure of brittle materials (in solid mechanics) is established as per either the 

phenomenological failure criteria, linear elastic fracture, elasto-plastic fracture, energy- 

based criteria, or cohesive zone models to model the non-linear expansion at the crack 

tip. Amongst the phenomenological failure criteria, some are applicable to brittle ma- 

terials and some to ductile materials. Within them the criteria applicable to brittle frac- 

ture are maximum stress or strain criteria, Mohr-Coulomb criteria, Bresler-Pister failure 

criteria, William-Warnke failure criteria, Johnson-Holmquist damage models (for high 

strain rate) and Hoek-Brown criteria. 

Hoek and Bieniawski (1965) [6] proved that the crack length during the triaxial test 

on brittle rocks depends on the confinement with extension approaching less than 10% 

of the crack length observed for confinement exceeding 10% of σ1. The authors showed 

that Griffith’s criterion was applicable for tensile and very low confinement conditions 

(with σ3 < 10% or σc/10). However, the authors also stated that for σ3 exceeding σc/10, 

the modified Griffith criterion with frictional coefficients between 0.75 and 1.5 was 

observed to be shear failure. Similarly, Diederichs (2003) [7] that extensile crack prop- 

agation was observed for low confinement, which ultimately led to brittle and spalling 

failure, or a combination of spalling and local shear failure. At high confinement such 

easy coalescence of cracks and shear or kink-band did not occur, which led to shear 

failure. Although Hoek – Brown criterion considers the effect of confinement, it does 

not account for change in the physical process. Also, the Coulomb criterion which con- 

siders the mobilization of cohesion and friction at failure, but for cohesive soils, and 

not for brittle rocks wherein it observed that cohesion is lost completely before the 

frictional strength at failure can be mobilized, as observed by Martin (1997) [8]. 

 
2 Review of existing stress-based criteria 

 
2.1 Coulomb Criterion 

As early as in 1773 Charles-Augustin de Coulomb while researching on the effect 

of lateral earth pressure acting on the retaining walls to improve the shear strength of 

the soil, devised the earliest form of failure theory. Lamé proposed that the material 

undergoes brittle failure when the maximum principal stress σ1 reaches the material 

strength σc (maximum principal stress theory), which is depicted as 
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𝜎1   ≤ 𝜎𝑐 (1) 
Coulomb observed that the shear strength of soil (in soil mechanics) was dependent 

on the parameters such as internal friction angle (φ) and cohesion (c) with the former 

dependent on stress imposed on the soil. Then Coulomb plotted shear stresses on y-axis 

against normal stresses applied on the soil mold on x-axis and found a linear correlation 

as follows with the failure observed when the shear stress exceeds the shear strength of 

the soil mass. 

𝑟 = 𝑐 + 𝜎𝑛 tan  (2) 
2.2 Mohr-Coulomb Criterion 

As early as 1900, Otto Mohr theorized that the shear strength of a material on plane 

stress is a function of the normal stress applied on it as τ = f(σn). Mohr devised the Mohr 

failure envelope as a line drawn tangent to the plot of circles at different combinations 

of major and minor principal stresses (σ1 and σ3) on a plot of τ (on y-axis) vs σn (on x- 

axis). Therefore, the Mohr failure envelope suggests that the shear strength at failure is 

a dependent on the normal stress developed across the failure plane. Additionally, it 

can be observed that the Mohr-Coulomb criteria is a convolution of both Mohr’s theory 

and Coulomb’s criteria. However, no tension cut-off was proposed. Mohr’s circle can 

also be used to find the principal stresses for a stress element as expressed below. 

𝜎1 = 𝜎𝑐 + ∅𝜎3 (3) 
or, 

𝑁𝜎1 − (𝑁 + 1)𝜎3 = 𝑉0 (4) 
Where N = (1-sinφ)/(2sinφ), V0 is the theoretical isotropic tensile strength, which can 

be computed from the equation as V0 sinφ = S0 cosφ and σc = 2S0 cosφ/(1-sinφ) is the 

uniaxial compressive strength of the material. The Mohr’s criterion considers torsion 

(displays helicoidal failure) along with uniaxial compressive strength and uniaxial ten- 

sile strength, which results into a non-linear envelope drawn on Mohr’s circles. Since 

the Rankine’s theory overestimated the ultimate strength, Mohr-Coulomb theory was 

more utilized. The linearized envelope (Mohr-Coulomb theory) considers just the uni- 

axial compression and uniaxial tension. For brittle materials, the critical principal stress 

points were computed as follows, where n is the design safety factor. 
𝜎𝑢𝑡   𝜎1 𝜎3 1 𝜎 = ; − = ; 𝜎 

 

𝜎𝑢𝑐 = − 
 

(5) 
1 𝑛 𝜎𝑢𝑡 𝜎𝑢𝑐 𝑛 3 𝑛 

But, since the Mohr-Coulomb theory is conservative in the fourth quadrant, Modi- 

fied Mohr criteria was deemed to be more suitable to study the brittle materials as it 

accounts for the nonlinear brittle failure in the fourth quadrant. The Modified Mohr 

criteria is computed as 
𝜎𝑢𝑡   (𝜎𝑢𝑐 − 𝜎𝑢𝑡)𝜎1 𝜎3 1 𝜎 = ; − = ; 𝜎 

 

𝜎𝑢𝑐 = − 
 

(6) 
1 𝑛 𝜎𝑢𝑐𝜎𝑢𝑡 𝜎𝑢𝑐 𝑛 3 𝑛 

2.3 Griffith’s Criterion 

The linear elastic fracture mechanics assesses the unstable crack growth as the 

stresses induces mode I opening up the crack in the plane of stress (Griffith (1921; 

1924) [9, 10]. Griffith’s theory as per the law of thermodynamics evaluates the critical 

stress σ or strain energy consumed to propagate these microcracks during the uniaxial 

tensile strength (in solid mechanics) as 
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𝜎 = √
2𝐸𝛾 

𝜋𝑎 

 

(7) 

Where E is the Young’s modulus of the material, γ is the surficial energy consumed 

per unit area of the crack, and 2ɑ is the crack length for 2D cracks. Griffith hypothesized 

that in expense of some energy called the dissipation energy a new crack is developed. 

The mode I fracture toughness in plane strain condition is 

𝐾𝐼𝑐 = 𝑌𝜎𝑐√𝜋𝑎 (8) 
Where σc is the far-fields critical stress and Y is the dimensionless parameter depend- 

ent on geometry, material properties and loading conditions. If stress intensity factor 

determined experimentally, is greater than the fracture toughness of the material, crack 

propagation and localized coalescence is observed. However, this method presents a 

challenge to compute the fracture stress in a complex geometry or loading condition. 

Alternatively, in a plane strain condition, the strain energy release rate criterion is more 

pertinent to brittle failure. It is defined for a mode I crack through the thickness of the 

plate as 
𝑃 𝑑𝑢 

𝐺𝐼 = 
2𝑡 𝑑𝑎 

(9) 

Where P is the force applied, through the t thickness of the plate which is deformed 

by a displacement u at the point of application of the force leading to crack growth, and 

ɑ is the crack length at the edge or 2ɑ is the plane crack length. It is assumed that when 

the strain energy release rate exceeds the critical value of G I, namely GIc, i.e., the critical 

strain energy release rate, the crack propagation takes place. For a plane stress condi- 

tion, the fracture toughness KIc and critical strain energy release rate GIc are associated 

as 
𝐺    = 

1 
𝐾2 (10) 

 

𝐼𝑐 𝐸  𝐼𝑐 

Hence, Griffith’s criterion is applicable in tensile and tensile-shear failure. Griffith’s 

criterion suggests that the crack extension in the plane of compression is influenced by 

the principal stresses and tensile strength of the material undergoing cracking as fol- 

lows. 
(𝜎1 − 𝜎3)2 = 8𝑇0(𝜎1 + 𝜎3); 𝑖𝑓 𝜎1 + 3𝜎3 > 0 

{ 
𝜎

 = −𝑇 ; 𝑖𝑓 𝜎 + 3𝜎 ≤ 0 
(11) 

3 0 1 3 

Where T0 is the uniaxial tensile strength of the uncracked section of the thin plate. 

In the above stated equation, it is assumed that the compressive stress is positive. Fur- 

ther to refine the above criterion, Griffith (1924) developed a theoretical model of a 

randomly oriented elliptical crack in a plane of stress in an elastic homogenous material. 

Griffith observed high concentration of tensile stresses at the edge of the elliptical 

cracks (wing crack model) under the application of the compressive stresses. It was 

observed that the fracture initiates from the edge defect when the localized tensile 

strength of the uncrack section of the material is exceeded. Hence, the theory of crack 

initiation, propagation and coalescence of the microscopic fractures created due to high 

stress concentration at the sharp tip of the crack was recommended. Further, when the 

critically oriented fractures are propagated through the material and the ultimate stress 

is reached, failure of the material as whole occurs. 

Walsh and Brace (1964) [11] adjoined the shear mechanism at the tip of the crack 

and friction between the faces of the crack, and hence modified Griffith criterion (1962) 
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[12] was born. According to this criterion, the authors considered that crack closure 

may appear as the compressive forces are applied on the material, which can cause the 

shear failure to occur before the tensile stress reaches its ultimate value at the tip of the 

crack. To account for the shear fracture, the authors also proved that the aforementioned 

friction influences the shear fracture. Hence, the modified Griffith criterion can be ap- 

plied to anisotropic rocks. The modified Griffith criterion is expressed as below. 

𝜎1 [√𝜇2 + 1 − 𝜇] − 𝜎3 [√𝜇2 + 1 + 𝜇] = 4𝜎𝑡 (12) 
𝑟2 + 4𝜎𝑡𝜎𝑛 − 4𝜎2 = 0; 𝑖𝑓 𝜎   < 0 

{ 𝑡 𝑛 (13) 
𝑟 = 2𝜎𝑡 + 𝜇𝜎𝑛; 𝑖𝑓 𝜎𝑛 > 0 

Where μ is the coefficient of internal friction, σt is the tensile strength of the material, 

σn is the normal stress and τ is the shear stress developed at the crack closure faces. 
Murrel (1964) [13] extended the Griffith criterion further by considering all the three 

principal stresses, σ1, σ2 and σ3. The extended Griffith criterion in the π-plane has a 

circular surface and denoted as follows. 

(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2 = 24𝑇0(𝜎1 + 𝜎2 + 𝜎3) (14) 
2.4 Nadai Criterion 

Nadai (1950) [14] suggested a general 3D failure criterion that suggests that the ma- 

terial failure occurs when octahedral shear stress τoct has reached its critical value. How- 

ever, brittle fracture does not follow it accurately since the strength varies incredibly 

with varying confinement. This octahedral shear stress and octahedral effective normal 

stress is calculated as. 

𝑟𝑜𝑐𝑡 = 
1 
√(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2 (15) 

3 

𝜎𝑜𝑐𝑡 

(𝜎1 + 𝜎2 + 𝜎3) 
= 

3 
(16) 

2.5 Wiebols and Cook Criterion 

Experimental investigations of the polyaxial test data did not agree with the circular 

surface of the failure criteria in the π-plane. Hence, researchers such as Wiebols and 

Cook (1968) [15] augmented stress invariant J3 into the ever evolving failure criteria. 

Since ׀τ׀ – μσn > 0 when shear sliding occurs at the surfaces of the crack as mentioned 

by modified Griffith’s criterion, this quantity is called the effective shear stress, and the 

strain energy per unit volume of material stored at the cracking surface is called effec- 

tive shear strain energy. The aforementioned energy is dependent on the magnitude of 

the principal stresses and the orientation of the crack axis with the principal stress di- 

rection. The normal and shear stresses on such cracks can be computed as. 
𝜎𝑛 = 𝑙2𝜎1 + 𝑚2𝜎2 + 𝑛2𝜎3 {  2 2  2 2    2 2   2 2 (17) 

𝑟 = 𝑙 𝜎1 + 𝑚 𝜎2 + 𝑛 𝜎3 − 𝜎𝑛 

For the uniaxial stress condition, the normal and shear stresses reduce to 

𝜎𝑛 = 
𝜎1 

(1 + 𝑐𝑜𝑠2𝜃) (18) 
2 
𝜎

 
   = ׀𝑟׀

1 
𝑠𝑖𝑛2𝜃 (19) 

2 
Thus, for a uniaxial stress condition, the effective strain energy can be computed as 

 
𝑊𝑒𝑓𝑓 

𝑁𝜋𝜎2 
= 

1 
[ 

2 

7𝜇6𝜇 + 15𝜇4 + 9𝜇2 + 1 
5 + 

5𝜇2 + 3 
 

 

1 2 

16𝜇 
− 15 

 
] (20) 

30(𝜇2 + 1)2 6(𝜇   + 1)2 
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Whereas in biaxial stress condition (σ1= σ2, σ3=0), the normal and shear stress reduce 

to 

𝜎𝑛 = (𝑙2 + 𝑚2)𝜎1 (21) 
𝑟2 = (𝑙2 + 𝑚2)𝜎2 − (𝑙2 + 𝑚2)2𝜎2 (22) 

1 1 

Thus for a biaxial stress condition, the effective shear strain energy can be computed 

as 

 
𝑊 = 

𝑁𝜋𝜎2 
1 

[
 

 

𝜇7 + 9𝜇5 + 15𝜇3 + 7𝜇 2𝜇5 + 6𝜇3 + 4𝜇 
− − 

 

3𝜇2 + 𝜇 32𝜇2 + 8 
+ 

 

 
] (23) 

𝑒𝑓𝑓 2 5 

30(𝜇2 + 1)2 3(𝜇2 
3 

+ 1)2 2(𝜇2 
1 15 

+ 1)2 

Moreover, in polyaxial stress state, the effective shear stress energy can be computed 

as 

𝑊 = ∑ 
2𝑁𝜋 

(|𝑟| − 𝜇𝜎 )2 ;    𝑤ℎ𝑒𝑟𝑒 |𝑟| > 𝜇𝜎 
 

(24) 
𝑒𝑓𝑓 𝐾 𝑛 𝑛 

And the directions cosines for each relevant point in a unit octant are 

𝑙 = 𝑐𝑜𝑠𝜓; 𝑚 = 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜆; 𝑛 = 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜆 (25) 
Such that the longitude angle λ and polar angle ψ of each point are 

𝜋 1 
𝜓 = √ ( 

2𝐾  2 

 
+ 𝑎) ; 𝑎 = 0, 1, 2, 𝑒𝑡𝑐; such that 𝑎 = (0, 

 
 

√
𝐾𝜋 

− 
1

]
 

2 2 

 
(26) 

 
  

1 
𝜆 = 

sin 𝜓 

𝜋 1 
√ ( 

2𝐾 2 

 

+ 𝑏) ; 𝑏 = 0, 1, 2, 𝑒𝑡𝑐; such that 𝑏 = (0, √
𝐾𝜋 

2 

1 
𝑠𝑖𝑛𝜓 −   ] 

2 

 

(27) 

A limitation of this criterion is the unavailability of any recognized laboratory 

method of determination of the coefficient of sliding friction on microcracks. 

Colmenares and Zoback (2002) [16] proposed the Modified Wiebols and Cook cri- 

terion and defined the second invariant of deviatoric stress J2 as. 
1 
𝐽2 = 𝐴 + 𝐵𝐽1 + 𝐶𝐽2 (28) 

2 1 

Where, A, B, C are the material constants, that depend on the particular rock type 

and minimum principal stress. These constants can be determined from the conven- 

tional triaxial compression tests. 

2.6 Mogi Criterion 

Hobbs (1970) [17] proposed a simple power law for fracture and yield stress with 

varying B and b parameters for each rock types. In addition, a simple power law equa- 

tion for shear stress as given below was suggested. 

𝜎1 = 𝐵𝜎𝑏 + 𝜎3 (29) 
𝑟 = 𝑘𝜎𝑎; where k and a are cconstants varying for each rock types (30) 

Mogi (1971) [18] proposed a criterion which considers all the three principal stresses 

and based it on the octahedral shear stress and a mean stress, thus the Mogi criterion 

has a form τoct = f(σm,2), where octahedral shear stress and mean normal stress have 

their usual meaning. The linearized Mogi criterion is called the Mogi-Coulomb crite- 

rion. Al-Ajmi and Zimmerman (2005) [19] based on the work of Mogi devised a linear 

relation between τoct and σm by curve fitting polyaxial data from eight different rocks 

in the corresponding space, which is written as. 

𝑟𝑜𝑐𝑡 = 𝑎 + 𝑏𝜎𝑚 (31) 
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Where a parameter is the intersection of the fitting line on the τoct axis and the b 

parameter is the angle of inclination with the σm axis. This criterion was found to not 

only complement the acquired polyaxial data brilliantly but also the triaxial test data. 

Later of which reduces the linear Mogi-Coulomb criterion to Mohr-Coulomb criterion. 

As reported by Chang and Haimson (2012) [20], this criterion requires laboratory true 

triaxial test data and the parameters differs slightly for all rocks with varying σ2 and σ3. 

Mogi (1971) also observed through tests on marble, dolomite that ductility (εn) in- 
creases with increasing σ3 but decreases with increasing σ2, which is expressed as. 

𝜀𝑛 = 𝑓3(𝜎3 − 𝛼𝜎2); where f3 is a montonically increasing function (32) 

From the above equation Mogi (1971) also understood that at deeper levels the sud- 

den release of elastic strain energy is higher than calculated from conventional triaxial 

compression test since higher value of σ2 can lead to decrease in ductility. Also, Mogi 

observed the striking of fractures in the 2D plane parallel to the intermediate principal 

stress direction. Hence Mogi updated the Nadai criterion by accounting for the average 

of major and minor principal stresses instead of octahedral normal stress. The Mogi 

power criterion can be rewritten as an empirical criterion as follows. 

𝑟𝑜𝑐𝑡  = 𝐴𝜎𝑛 (33) 
where A and n are material constants. 

2.7 Hoek-Brown Criterion 

Hoek and Brown (1980) [21] on the basis of tests on intact specimens proposed a 

criterion as follows. 

𝜎1 𝜎3 = + √𝑚 
𝜎3 

+ 𝑠 (34) 

𝜎𝑐 𝜎𝑐 
𝑏 𝜎𝑐

 

Where s = 1.0 for intact rocks and mb >> 1.0. However, in-situ conditions will defer 

widely from laboratory ideal conditions. Thus, Hoek and Brown (2002) [22] recom- 

mended a failure criterion for brittle rock mass as expressed here. 
𝜎3 

𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (𝑚𝑏 
𝑐𝑖 

𝑎 

+ 𝑠) (35) 

Pan and Hudson (1988) [23] expressed the 3D stress state of the Hoek and Brown 

criterion as. 
9   

𝑟2     + 
3 

 

𝑚𝑟 − 𝑚 𝜎′ = 𝑠𝜎 (36) 
2𝜎𝑐 

𝑜𝑐𝑡 2√2 
𝑜𝑐𝑡 𝑚,3 𝑐 

Whereas, Zhang and Zhu (2007) [24] proposed the 3D Hoek-Brown criteria as, 
9   

𝑟2     + 
3 

 

𝑚𝑟 − 𝑚 𝜎′ = 𝑠𝜎 (37) 
 

2.8 Rao Criterion 
2𝜎𝑐 

𝑜𝑐𝑡  

2√2 
𝑜𝑐𝑡 𝑚,2 𝑐 

Rao (1984) [25] and Rao et al. (1986) [26] proposed a nonlinear failure criterion for 

intact rocks that originated from Mohr-Coulomb criterion. It is expressed as follows. 

𝜎1 − 𝜎3 
 = 𝐵 ( 

𝜎𝑐   
𝛼 

) (38) 
𝜎3 𝜎3 

Where, α is the slope of the plot between (
𝜎1−𝜎3) and (𝜎𝑐) on the log-log scale, and 
𝜎3 𝜎3 

B is a material constant which is sensitive to geological nature of rock, computed as 

(
𝜎1−𝜎3) [27]. This equation works well for brittle rocks undergoing shear and shear- 
𝜎3 

tension fracture and under low confinement. The theory was later on extended for 

𝜎 
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strength prediction of anisotropic and weathered rockmass. However, the theory under- 

estimates the potential strength under high confinement and different nature of fracture 

under high confinement and hard brittle rocks. 

2.9 Bresler-Pister Criteria 

Bresler-Pister (1985) [28] yield criterion is a failure criterion that was devised to 

predict the strength of concrete under multiaxial stress states. It is the extension of the 

Drucker-Prager [29] yield criterion that is expressed in stress invariants. Although the 

DP criterion is simple and smooth, it tends to overestimate rock strength for general 

stress states and is not accurate when one of the principle stresses is tensile. Whereas, 

the Bresler-Pister [28] yield criterion is expressed in terms of the stress invariants as. 

√𝐽2 = 𝐴 + 𝐵𝐼1 + 𝐶𝐼2 (39) 
Where A, B and C are material constants. These parameters can be expressed in 

terms of yield stress in uniaxial compression, yield stress in uniaxial tension and yield 

stress in biaxial compression. 

2.10 Johnson-Holmquist Model 

In 1992 and 1994, the Johnson-Holmquist damage models were proposed, which are 

used to model mechanical behaviour of damaged brittle materials, such as rocks, under 

a great range of strain rate [30, 31]. These materials exhibit high compressive strength 

and low tensile strength. The first version of the model, called the 1992 Johnson- 

Holmquist 1 (JH-1) model, was developed to simulate high strain, but ignored the pro- 

gressive damage with increasing deformation. The second version called the Johnson- 

Holmquist 2 (JH-2) model or Johnson-Holmquist damage material model accurately 

simulated the damage of brittle materials under ballistic impact, as well as the effect of 

the hydrostatic pressure and damage on the strength of such brittle materials. 

2.11 Ottosen Criterion 

The Ottosen (1977) yield criterion [32] which is a four parameter failure criterion 

applicable for a short duration loading of concrete. It is generally expressed as. 
𝑎 

 

𝐹𝑦 = 𝐽2 + 𝜆(𝜃)√𝐽2 + 𝑏𝐼1 − 𝜎𝑐 (40) 
𝑐 

Where, a and b are dimensionless parameters and the dimensionless function λ(θ) 

depends on the Lode angle θ. The Ottosen yield criterion is the same as DP criterion 

when a = 0 and λ is independent of the Lode angle. 

2.12 Feng et al. Criterion 

Feng et al. (2020) [33] proposed a 3D failure criterion for hard brittle rocks wherein 

the authors accounted for cohesion and friction angle at unsymmetrical horizontal stress 

loading, along with the difference in strength of the rock at TC and TE states and influ- 

ence of σ2. The authors proposed a linear and nonlinear (hyperbolic) failure criteria as 

follows, respectively. 

(√1 − 𝑏 + 𝑠𝑏2 + 𝑡 (1 − √1 − 𝑏 + 𝑏2) 𝑠𝑖𝑛0) (𝜎1 − 𝜎3) = (𝜎1 + 𝜎3)𝑠𝑖𝑛0 + 2𝑐0𝑐𝑜𝑠0(41) 

Where, b is the intermediate principal stress coefficient calculated as the ratio of 

difference of principal stresses, i.e., 
𝜎2−𝜎3

, and c0 indicates the cohesion at b = 0 and φ0 
𝜎1−𝜎3 

indicates friction angle at b = 0. 



TH-05-034 9 

 

 

 

 

𝜎1 − 𝜎3 
2 

( ) 
𝑠𝑖𝑛𝑏 

 
= (𝜎1 + 𝜎3 + 2𝑐0𝑐𝑜𝑡0)2 

 

+ 𝑎 (42) 

Where a is the material constant. It is determined from either unconfined compres- 

sion test or uniaxial tensile test as shown in Feng et al. (2020) [33]. 

 
3 Review of existing strain-based criteria 

 
3.1 Stacey extension strain criterion 

Stacey (1981) [34, 35] proposed empirical strain based criterion which is applicable 

in low confinement underground excavation faces. Stacey suggested that the fracture 

in a brittle rock will initiate when the total extension strain exceeds the characteristic 

critical strain of that rock, i.e., ε3 ≥ εc. 
The brittle fracture will form in the plane normal to the direction of extension strain, 

i.e., minor principal stress direction. For a linearly elastic material, the least principal 

strain is depicted as. 
1 

𝜀3 = 
𝐸 

(𝜎3 − 𝑢(𝜎1 − 𝜎2)) (43) 

According to this, the extension fracture can form when all the principal stresses are 

compressive and the net effect even at failure is compressive. 

 
3.2 Sakurai critical strain criterion 

Sakurai (1981) [36] proposed a direct strain evaluation technique to estimate the allow- 

able maximum principal strain ε1. It was suggested that for brittle fracture that as ε1 

approaches the critical strain ε0 which is determined from axial stress-strain curve, as 

shown below, the fracture possibility increases. 

𝜀0 
𝜎𝑐 

= 
𝐸𝑖 

(44) 

Later in 1995, Sakurai et al. (1995) [37] proposed that since the shear failure occurs 

in the minimum principal strain, maximum shear strain γmax approaching critical shear 

strain γ0 can serve as a warning of tunnel instability, and it can be computed from uni- 

axial compression test as follows. 

𝛾 = 𝛾 = 
𝑟𝑚𝑎𝑥,𝑓 

= 
(𝜎1 − 𝜎3)𝑓 

= 
(𝜎1 − 𝜎3)𝑓 

. 
2(1 + 𝑢) 

= 𝜀 (1 + 𝑢) (45)
 

 

𝑚𝑎𝑥 0 𝐺50 2𝐺50 2 𝐸50 
0

 

Where G50 and E50 are the secant modulus of shear and Young’s modulus at 50 % of 

the ultimate strength. 

 
3.3 Fujii critical tensile strain criterion 

Fujii et al. (1993a, b, 1994a, b) [38–40] stipulated on the basis of unconfined, triaxial 

compression tests and Brazilian tensile tests that the brittle fractures in rocks are com- 

manded by ε3 which when reaches critical tensile strain εTC, fracture appears. The au- 

thors also observed that the effect of confinement on εTC is negligible. 
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3.4 Kwasniewski and Takahashi critical strain criterion 

Kwasniewski and Takahashi (2010) [40] found that shear octahedral shear strain γoct 

increases linearly with extensile strain ε3, however, a better correlation exists between 

γoct and ε1, as fractures are aligned parallel to σ1 direction. Hence, the criterion can be 

written as follows. 

𝛾𝑜𝑐𝑡 = 𝑎 + 𝑏𝜀1 (46) 
In summary, since the deformation can be easily and readily measured in the field, the 

strain based criteria is used frequently in practice. Under the influence of low and me- 

dium confinement, Stacey criterion, Fujii criterion and Kwasniewski and Takahashi 

criterion will prove to be useful, however, Sakurai criterion will be applicable in non 

confined/low confinement loading environment or in hard brittle rocks found in deep 

excavations which undergo shear failure. 

 
4 Comparative studies of stress response of rocks under 

polyaxial stress conditions 

For this study well known and widely accepted failure criteria for brittle materials are 

selected, namely extended Griffith’s criterion (Murrell criterion), Modified Weibols 

and Cook criterion (Colmenares and Zoback’s modified WC criterion), Mogi nonlinear 

true triaxial criteria, Modified 3D Hoek-Brown criterion (Zhang and Zhu’s 3D HB cri- 

terion), Bresler-Pister criterion, and Feng et al. criterion are discussed. 

With preliminary calculations performed for extended Griffith’s criterion, it can be 

seen that this criterion underestimates the strength of Westerly granite [16, 41] in low 

confinement (σ1 = 177.7 MPa at σ2 = 18 MPa, σ3 = 2 MPa; tested σ1 = 300 MPa), and 

massively underestimates the strength in high confinement (σ1 = 549.8 MPa at σ2 = 310 

MPa, σ3 = 77 MPa; tested σ1 = 1005 MPa). Comparing the trendline from modified WC 

criterion with the plots of σ1 vs σ2 for varying σ3 (Figure 1 (a)), a mean misfit of ap- 

proximately 27 MPa and overestimating at higher σ2 i.e., near TE state can be observed. 

Similarly, from Figure 1 (b) comparing the trendline from Mogi (1971) criterion with 

the polyaxial test data for Dunham dolomite shows that Mogi (1971) has a mean misfit 

of approximately 28 MPa, overestimates strength at very high σ3, i.e., near TE state and 

the criterion in discussion is not a good fit for very high σ2 and σ3. 
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Figure 1. Best fitting solutions for Dunham dolomite using (a) Modifeid Weibols - Cook (WC) 

criterion, (b) Mogi (1971) criterion in principal stress domain. 
 

From Figure 2, parameters m and s can be calculated from the trendline for the best 

fitting of Zhang and Zhu’s modified Hoek-Brown criterion (Table 1). It can be noted 

that the criterion underestimates and overestimates values for Dunham dolomite and 

Westerly granite, respectively. Also, it can be observed that the mean misfit for Dun- 

ham dolomite is 3.31MPa spread along the length with more misfit towards higher con- 

finement, and for Westerly granite it is 0.64 MPa which is spread all along the length 

of the confinement. Also, the Hoek-Brown parameters (m and s) calculated are incor- 

rect as the actual m and s parameters are 9±3 and 32±3 for Dunham dolomite and West- 

erly granite, respectively. 

 
Table 1. m and s parameters from Zhang and Zhu's Modified Hoek-Brown criterion. 

Rock m s 

Dunham dolomite 6.682 0.55 

Westerly granite 47.58 1.582 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Best fitting solutions using Zhang and Zhu's Modified Hoek-Brown criterion for (a) 

Dunham dolomite, (b) Westerly granite in octahedral plane. 
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Using σc of Westerly granite as 201 MPa, σb as 460.08 MPa and σt as 12.5 MPa, 

parameters A, B and C for Bresler-Pister criterion are 14.4, 0.57 and -3.23E-4. A com- 

parison has been made between the test data and Bresler-Pister criterion in Figure 3. It 

can be observed that it is applicable to low strength brittle materials with fair accuracy, 

but as confinement increases, the criterion deviates away from the test data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Comparison of computed Bresler-Pister criterion with test data for Westerly granite. 

 

From the test data, c0 and ϕ0 for Feng et al. (2020) criterion can be calculated as 
41.27 MPa and 51.08˚. Also, parameter a is computed as -122241.23. Thereafter, pa- 

rameter sin(ϕb) is computed based on the deviator stress (σ1-σ3). For a non-zero b, at 

low confinement of σ2 = 18 MPa, σ3 of 2 MPa, the strength according to nonlinear 

criterion is 284.63 MPa (tested σ1 is 300 MPa), and at σ2 = 310 MPa, σ3 = 77 MPa, the 

strength is 959.63 MPa (tested σ1 is 1005 MPa). Although Feng et al. criterion observes 

strengthening with increasing confinement and lower misfit at higher σ3. It also ob- 

serves no significant influence of σ2, quotes lower strength for varying σ3 and has an 

average misfit of 44.9 MPa. Hence, this criterion needs to be improved upon. 

 
5 Discussion and Conclusion 

 
Although new true-triaxial failure criteria have been developed, Mogi (1971) crite- 

rion (3D) and Hoek-Brown criterion remain a standard for further research, especially 

in brittle fracture mechanics of rocks, due to their empirical nature and adaptability in 

varying stress states. If static and quasi-static loading condition is in focus, then the 

classical works of Mogi, Haimson and Chang, Feng et al., C.D. Martin et al., Colmena- 

res and Zoback, Tiwari and Rao, Zimmerman, and Weibols and Cook play a huge role 

in the study of brittle fracture of rocks. However, if dynamic loading or impact loading 

is taken into consideration then the works of Johnson-Holmquist and Ottosen play a 

crucial role in the study of brittle rock fracture of rocks under ballistic impact. 

Based upon the review done here, Mogi (1971), Modified 3D Hoek-Brown, and 

Modified Weibols and Cook criteria are still the best failure criteria for true triaxial 

stress conditions. It is to be noted that minimal overestimation by Modified WC crite- 

rion and Mogi (1971) criterion are suitable, since the support system provided 
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according to these failure criteria will withstand higher load as the rock approaches its 

ultimate strength in underground openings. 

Since, deformations can be monitored in underground openings using total station 

easily. The observations made by Stacey, Sakurai and Kwasniewski and Takahashi are 

important. If during the fracture of rocks there is insignificant plastic deformation and 

the calculated minimum principal strain reaches its critical strain, there is high possi- 

bility of bursting or spalling in underground openings. Hence, such brittle geology de- 

mands suitable application of shotcrete, wire mesh along with yielding rockbolts or 

energy absorbing rockbolts and yielding steel arch supports in tunnels and caverns. 

Temporary underground mine areas may require lattice girders and steel ribs along with 

rockbolts in such cases or destress blasting or caving in extreme stress conditions. 
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