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Abstract 

Properties of geological materials vary significantly both spatially and 

temporally. Geotechnical design and practice are influenced by variations in 

properties and proper consideration of loads on geotechnical systems, and 

resistance provided by the geological systems represented by engineering 

properties, which are random variables/fields is necessary.  Significant 

developments exist in the consideration of the variability of loads and 

resistances, and the reliability-based design of geotechnical systems has 

developed very well. The objective of the paper is to present some work done by 

the author and his students in this area, with reference to foundations, retaining 

walls, slopes, dams, landslides, pavements, buried pipes, tunnels, landfill 

engineering, and contaminant transport in geological media. It is emphasized that 

probabilistic considerations play a significant role in understanding the role of 

uncertainties in design and provide a rational and risk-informed approach for the 

analysis and design of geotechnical and environmental systems. A few perceived 

benefits of rational design and analysis are demonstrated in this paper. 

Introduction 

Characterization and analysis of the behavior of the geological medium 

consisting mainly of soils and rocks under the given loading & environmental 

conditions form the basis for geotechnical or geoenvironmental analysis and 

design. However, owing to various physical, chemical, and biological 

processes during their formation, these natural materials possess unique 

properties that vary significantly over expansive spatial and temporal scales. 

This phenomenon manifests as an inherent randomness (also known as 

aleatory variability) or heterogeneity in the geological medium. Further, in 

geotechnical and geoenvironmental designs, lack of reliable information 

which can occur due to inaccurate characterization of site-specific properties 

(i.e., measurement errors), the inadequacy of mathematical formulations in the  
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predictive models (i.e., modelling errors) engenders uncertainties (also known 

as epistemic uncertainty) in the system. Ignoring these uncertainties poses a 

serious challenge to the consideration of a single deterministic design outcome 

in the form of factors of safety, allowable stresses, and deformations from the 

analysis and its implications in practice, which affects construction costs, 

failure costs, consequences, etc. Also, by ignoring the uncertainties, the 

system’s response will be either underestimated or overestimated, which 

results in an undesired and uneconomical solution. Thus, there is a need to 

account for these uncertainties and quantify their impact on the design by 

employing effective probabilistic and reliability-based design techniques. 

The characteristics of natural soil exhibit inherent variability that significantly 

influences decisions in geotechnical engineering design. This variability may 

stem from both the intrinsic nature of the soil itself and variations introduced 

during the measurement of soil properties in field or laboratory tests, as well 

as errors in models. The variability in soil properties is commonly expressed 

in statistical terms such as mean, variance, and autocorrelation functions. 

These statistical measures are essential for incorporation into probability and 

reliability-based analyses and designs. In reliability-based design, the primary 

metric used is the reliability index or probability of safety, conversely 

expressed as the probability of failure (pf). This index serves as a probabilistic 

measure of the assurance regarding the performance of a structure. The 

fundamental goal of reliability-based design in geotechnical engineering is to 

quantitatively assess the probability of failure or reliability of a given 

geotechnical system. This assessment takes into account the inherent 

variability present in design parameters and associated safety considerations. 

Figure 1 shows the nature of variability in soils [1]. Variability of soil 

properties is due to data scatter and systematic errors. Data scatter can be 

attributed to spatial or temporal variations or random errors. Systematic errors 

are due to errors in the estimation of trends and bias in measurements. The 

spatial variability arises due to inherent variability, whereas measurement 

uncertainty contributes to data scatter. Bias in measurements arises from 

transformation uncertainty.  Spatial correlation of soil properties due to 

inherent variability is an important geological consideration and the properties 

at a point are well correlated to those in nearby locations rather than those at 

a distance, indicating that the properties are correlated over distance and with 

distance the correlation diminishes.  
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Fig.1. Variability in soil properties (redrawn from Christian et al. [1]) 

The spatial correlation is often expressed in terms of the auto-covariance 

functions and the exponential form of the auto-correlation function is widely 

used. Many researchers, such as Vanmarcke [2], Fenton and Griffiths [3], 

Jaksa et al. [4], etc., made notable contributions in this area. The average 

properties over areas or volumes influence the response of the structures in 

terms of displacements, strain mobilization, flow fields, permeability 

variations, pore pressure response, etc., and lead to variations in response.  

Codes 

Guidelines for reliability-based design and analysis are encouraged by 

USACE [5], emphasizing different performance levels along with associated 

probabilities of failure (pf) and reliability index (β). The widespread adoption 

of reliability-based design (RBD) in structural engineering is supported by 

ISO2394 [6], which provides general principles on reliability for structures. 

Annex D of ISO 2394 outlines provisions for geotechnical reliability-based 

designs. ISO 2394 Clause 8.4 suggests that the target pf should consider factors 

such as the consequence and nature of failure, economic losses, social 

inconvenience, environmental effects, sustainable use of natural resources, 

and the effort and expense required to reduce the pf. 

Geotechnical variabilities are traditionally addressed in deterministic design 

methods using the factor of safety (FOS), leading to either inefficient 

overdesign or underdesign with an unknown safety level. Load and resistance 

factor design (LRFD) employs partial factors calibrated to achieve a target 

reliability index across various design scenarios. However, fixed partial 

factors may not cover all scenarios involving different levels of soil property 

variation, potentially leading to inefficient designs [7]. Advanced 

mathematical techniques, like probabilistic methods, offer a systematic way to 

consider these variabilities. 
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According to Phoon [8], geotechnical reliability is a comprehensive 

methodology enhancing decision-making across various life-cycle stages, 

including design, construction, operation, maintenance, retrofit, and 

decommission/reuse. This methodology, leveraging probabilistic models for 

richer data characterization, extends beyond engineered systems to cover risk 

assessment and management of geohazards such as earthquakes and 

landslides. Its applications span different stages of engineered geotechnical 

systems, requiring thorough data collection, analysis, design, construction, 

and maintenance for robust engineering decision-making. 

Methods of reliability analysis 

The reliability analysis requires mean values and variances for random 

variables, along with autocorrelation functions for random fields. Empirical 

functions are commonly used to fit autocovariance functions, and normalizing 

the autocovariance by the variance yields the autocorrelation function. Various 

autocorrelation functions are available in the literature [2], with the 

autocovariance function relying on the correlation distance, defined as the 

distance over which a property demonstrates a strong correlation. Reliability 

analysis methods, including the First Order Reliability Method (FORM), 

partial factors, Monte Carlo simulations (MCS), quantile values, and system 

reliability, are grounded in probabilistic considerations, drawing from 

extensive literature [9,10]. 

Performing probabilistic analysis often demands numerous simulations, which 

can be computationally prohibitive with numerical models. Therefore, 

surrogate modelling techniques are used to approximate numerical models. 

The Response Surface Method (RSM) and Stochastic Response Surface 

Method (SRSM) serve as tools for developing surrogate models. When RSM 

falls short, and SRSM encounters limitations in approximating nonlinear 

functions, advanced kriging methods, such as active learning kriging or 

adaptive kriging, enhance the applicability of surrogate models in design and 

optimization. These methods contribute to computational efficiency by 

reducing the number of numerical simulations, concentrating on the area of 

interest. 

Additionally, the implementation of subset simulation (SS), an advanced 

sampling method, proves beneficial for estimating the probability of events 

with very small failure probabilities [11]. Subset simulation is recognized for 

its computational efficiency and employs the Markov Chain Monte Carlo 

(MCMC) algorithm to sample from conditional distributions. The core idea of 

subset simulation involves representing a small failure probability as a series 

of more frequently occurring higher failure probabilities. This method has 
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gained recognition as one of the most computationally efficient techniques for 

modelling rare events [12-14]. 

There has been a general reluctance to use reliability-based designs in 

geotechnical engineering despite its obvious advantages, whereas design in 

structural engineering uses reliability analysis better. Some reasons are that 

the resistance factors for geologic materials depend on coefficients of variation 

or variability, which are larger compared to those in the case of materials such 

as steel and concrete and correlations exist among geotechnical properties, 

which makes evaluation of pf quite involved. Information from load variations 

such as rainfalls and earthquakes are not used commonly leading to failures in 

dams, pavements, embankments, landslides, etc. The research work carried 

out by the author and his students highlights the practical application of 

adopting the probabilistic methodologies in the areas of geotechnical and 

geoenvironmental engineering, which are presented in the following sections. 

(i) Shallow foundations 

Due to the inherent nature of soil formation and depositional processes, soils 

display variability in both horizontal and vertical directions, leading to 

anisotropic correlation structures of soil properties, with greater variability 

typically observed in the vertical direction [15]. Acknowledging contributions 

from inherent variability, measurement uncertainty, and transformation 

uncertainty, comprehensive analyses are essential. Economic considerations, 

exploration speed, equipment limitations, and time constraints often result in 

the collection of borehole data predominantly from the vertical direction. 

Murthy and Sivakumar Babu [16] have appropriately considered these factors 

in their analyses. The work delves into the impact of assumptions regarding 

the spatial correlation of cone tip resistance on the performance of shallow 

strip foundations using shear criteria. Results indicate that an isotropic 

correlation structure based on vertical autocorrelation distance tends to 

underestimate design parameter variability. Conversely, perfect correlation in 

horizontal or vertical directions, or both, tends to overestimate design 

parameter variability, leading to conservative estimates of allowable bearing 

capacity. Notably, the transformation model significantly influences the 

degree of variability in design parameters. 

Sivakumar Babu et al. [17] presented results on the bearing capacity of shallow 

foundations on cohesive soil, Sivakumar Babu and Murthy [18] examined the 

effect of spatial correlation of cone tip resistance on the bearing capacity of 

shallow foundations, Sivakumar Babu and Srivastava [19] focused on using 

the response surface method to evaluate allowable bearing pressure, and 
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Geetha Manjari et al. [20] investigated the evolution of settlement of footings 

on cohesionless soil under increasing loads as a stochastic process, employing 

a tri-level homogeneous Markov chain model. 

(ii) Pile foundations 

The spatial correlation structure of soils plays a crucial role in estimating 

ultimate load capacity and strain mobilization, as demonstrated in the case of 

variable soil around a pile foundation discussed below. The probabilistic study 

in question involves treating undrained shear strength as a random variable, 

employing random field theory for analysis. In this approach, inherent soil 

variability is considered a source of variation, and the field is modelled as a 

two-dimensional non-Gaussian homogeneous random field. The Cholesky 

decomposition technique is utilized to simulate the random field within a 

finite difference program, with Monte Carlo simulation being the chosen 

approach for the probabilistic analysis. The investigation focused on assessing 

the impact of undrained shear strength's variance and spatial correlation on 

the ultimate capacity, which is expressed as the sum of ultimate skin friction 

and end-bearing resistance of the pile. 

 

Fig. 2. Variation of Mean ultimate skin friction and Mean ultimate load of 

vertical pile with the CoV of undrained strength and scale of fluctuation. 

Results, methodology, and insights provided by Haldar and Sivakumar Babu 

[21] emphasize the importance of properly considering the spatial variability 

of soils. This consideration is essential not only for determining allowable 

loads but also for understanding the strains mobilized within the soil medium 

due to variability. Figure 2 illustrates a comparison between values of ultimate 

skin friction and ultimate total load obtained from both deterministic and 

probabilistic analyses. Notably, as the coefficient of variance (CoV) of 

undrained strength increases, mean values decrease, while an increase in 

correlation distance results in higher mean values. 
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Figures 3(a) and 3(b) show the differences in strain mobilization in 

deterministic soil and the soil medium with different correlation structures 

defined in terms of coefficient of variance (CoV) and spatial correlation 

distance. For example, close to the pile tip, the soil strains in the range of 0.008 

in the case of uniform soil and in the case of soil medium with high CoV 

(50%) and low correlation distance of 1.5 m has higher magnitudes of strain 

in the range of 0.012 at the tip compared to other cases. 

 

Fig. 3. Strain mobilization in the case of a) vertical pile in uniform soil 

medium and b) spatially variable medium. 

Haldar and Sivakumar Babu [22] reported a similar study on the lateral 

capacity of the piles, and the results are presented in Figures 4a and 4b. Figure 

4a shows the variation of mean lateral load and mean maximum moment of 

lateral pile with CoV of undrained strength and scale of fluctuation. It can be 

noticed that the ultimate lateral load decreases with an increase in CoV of 

undrained strength and increases with correlation distance. In Fig. 4b, the 

strain mobilization for a lateral pile is presented, revealing that the maximum 

strain in a spatially variable deposit is twice that observed in a uniform deposit. 

Furthermore, various studies have been conducted to assess the reliability of 

pile foundations. Notably, Haldar and Sivakumar Babu [23] explored the 

estimation of reliability using Cone Penetration Test (CPT) data. Additional 

investigations by the same authors cover probabilistic analyses of load-

displacement responses from pile load tests [24], LRFD (Load and Resistance 

Factor Design) of piles [25], and the design of pile foundations in non-

liquefiable soils [26]. These references provide detailed results for further 

exploration. 

Nazeeh and Sivakumar Babu [27] presented a critical appraisal of foundation 

design codes and the role of a reliability-based approach and offer valuable 

insights. The results from their analysis emphasize that the pf is a relative 
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measure, providing a basis for comparing different designs. Christian et al. [1] 

highlight the effectiveness of reliability analysis in establishing design values 

for factors of safety, especially when assessing consistent risks associated with 

different failure types. They suggest that probabilistic methods are most useful 

when estimating relative probabilities of failure and revealing the effects of 

uncertainties in the parameters. The optimization of foundation design 

considering variability is explored as a useful alternative, with an illustrative 

example presented in the following section. 

 

Fig. 4a. Variation of (a) mean lateral load and (b) mean maximum moment 

of lateral pile with CoV of undrained strength and scale of fluctuation [22] 

 

 

Fig. 4b. Maximum strain values in the case of a) homogeneous soil and 

spatially variable soil (undrained strength CoV= 30%  δz/Lp =0.15) [22] 
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(a) Foundation design optimization 

In geotechnical design, ensuring that no relevant limit state is exceeded is a 

fundamental requirement. The economic optimization limit state (EOLS), 

along with the ultimate limit state (ULS) and serviceability limit state (SLS), 

constitutes the three foundational requirements in foundation design. The ULS 

and SLS are specifically associated with the risks of shear failure and 

excessive settlement, respectively. The optimization process aims to minimize 

construction costs, treating design parameters as optimization variables and 

design requirements as constraints. The final design, which satisfies the target 

failure probability, is determined as the least-cost design through the 

comparison of cost and failure probability among available designs. 

Fathima et al. [28] demonstrated a design methodology for shallow 

foundations using numerical modelling with reliability-based optimization. 

Computational efficiency is enhanced by incorporating a kriging model into 

the design methodology, tapping into the potential of numerical modeling. The 

process is illustrated using a shallow foundation example. The analysis 

involves the development of kriging-based surrogate models for various 

foundation dimensions, considering different CoV and correlation values. 

Design optimization is then executed by evaluating the costs of different 

designs and selecting the least-cost design that meets the design requirements. 

Figure 5 illustrates a typical result of this optimization process. 

 

 Fig. 5. Normalized cost for different failure probabilities  

The kriging-based surrogate modeling technique has demonstrated its 

efficiency as a substitute for computationally expensive numerical models in 

predicting system performance accurately. An R2 value of 0.99 proves the 
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precision of the predictions. The study reveals that, using kriging-based 

probabilistic design and optimization, a foundation area of 12.25 m2 can be 

achieved at a cost of 1.1x for a target probability of failure (pf) value of 1.00 

× 10−3. Foundation costs tend to increase when targeting lower probabilities 

of failure within the range of 0.001. For comparison, values for 99% and 95% 

reliability yield areas of 8.75 m2 and 10.5 m2, respectively. The methodology 

also facilitates the determination of partial factors, with factors identified for 

95%, 99%, and 99.9% reliable designs. Specifically, factors for the angle of 

friction, unit weight, and Young’s modulus are found to be 0.85, 0.74, 0.72; 

0.99, 0.99, 0.98; and 1, 1, 0.61, respectively, corresponding to 95%, 99%, and 

99.9% reliability. The costs associated with 95%, 99%, and 99.9% reliable 

designs are determined as 0.73x, 0.88x, and 1.1x, respectively. 

Nazeeh and Sivakumar Babu [29] extended this work to reinforced soil 

foundations using geogrids (GG), and a representative result for a raft 

foundation is shown in Figure 6. 

 

Fig. 6. Comparison of pf of unreinforced and reinforced soil foundations 

with foundation area [29] 

Comparing the bearing capacity of reinforced and unreinforced soil, the 

improvement ratios range from 1.10 to 1.40, accounting for variations in soil 

properties and foundation sizes. If greater deformation is permissible, these 

values can increase to approximately 2 to 3 for ultimate bearing capacity. In 

the case of a typical isolated shallow foundation, kriging-based design, 

considering soil variabilities, indicates a foundation area of 14 m2 on 

unreinforced soil. This area is reduced to 12 m2 on geogrid-reinforced soil, 
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representing a reduction of around 15%. For a raft foundation, an initial area 

of 420 m2 is obtained without ground improvement using geogrids. This area 

is then reduced to 307.5 m2 on geogrid-reinforced soil, resulting in a reduction 

of approximately 17% (refer to Fig. 6). The kriging-based methodology 

developed in this study provides a versatile approach to designing and 

optimizing shallow foundations based on any numerical model. 

(iii) Retaining walls and bridge abutments 

 

The design of retaining structures hinges on critical factors, including the load 

transferred from backfill soil, external loads, and structural resistance each of 

which is characterized by random variables. Sivakumar Babu and Basha [30] 

and Basha and Sivakumar Babu [31-41] formulated reliability-based design 

frameworks for various retaining structures and bridge abutments. These 

encompass (i) cantilever sheet pile walls, (ii) cantilever retaining walls, (iii) 

gravity retaining walls, and (iv) reinforced soil structures. 

For cantilever sheet pile walls, Basha and Sivakumar Babu [31,32] determined 

the design penetration depth and section modulus, accounting for the desired 

target stability and considering rotational failure modes about the base point 

and the flexural failure mode of the sheet pile. In the case of anchored 

cantilever sheet pile walls, the study considered rotational, sliding, and 

flexural failure modes, determining penetration depth, anchor force, and 

section modulus corresponding to targeted reliability indices. The 

investigation highlighted that the optimum penetration depth and section 

modulus of the pile are notably influenced by the anchor pull and the soil-pile 

interface. 

For cantilever retaining walls, Sivakumar Babu and Basha [30] demonstrated 

that suitable optimal wall proportions can be achieved based on targeted 

component reliability indices, taking into account safety and economic 

requirements. Upper and lower bounds of the system reliability index were 

obtained for a series system with statistically dependent component failures. 

The study proposed optimal wall proportions for varying coefficients of 

variation of the friction angle of the backfill soil (5% to 10%) and cohesion of 

the foundation soil (5% to 20%), corresponding to different values of lower 

bounds of system reliability indices. The impact of the correlation coefficient 

between failure modes on upper and lower bounds of the system probability 

of failure was also explored. The results indicated that utilizing reliability-

based design for optimized proportions could lead to cost reductions compared 

to conventional designs. Figure 7 provides a  representation of typical results. 
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Fig. 7. Percentage savings in the cross-sectional area of retaining wall with 

reference for CoVϕ=5% 

Basha and Sivakumar Babu [36,37] reported findings related to reliability-

based design optimization of gravity wall bridge abutments under seismic 

conditions. The study employed reliability analysis to assess the pf across three 

modes: sliding failure of the wall at its base, overturning failure about its toe, 

and eccentricity failure of the resultant force, as well as bearing failure of the 

foundation soil below the base of the wall. Both backfill and foundation soil 

properties beneath the abutment's base were treated as random variables. 

Furthermore, uncertainties associated with characteristics of earthquake 

ground motions, including horizontal seismic acceleration and shear wave 

velocity propagating through backfill soil, were considered. Optimal abutment 

proportions required to ensure stability were determined against these three 

modes of failure by targeting various component and system reliability 

indices. A summary of typical results is provided in Table 1. 

(iv) Reinforced soil structures 

Basha and Sivakumar Babu [32] introduced a method for assessing the 

external stability of reinforced soil walls under earthquake conditions, 

utilizing the pseudo-dynamic method. The seismic reliability of the wall was 

evaluated, taking into account various potential failure modes, including 

sliding along the base, overturning about the toe point of the wall, bearing 

capacity, and the eccentricity of the resultant force. The analysis considered 

random variables such as properties of the reinforced backfill, foundation soil 

below the wall's base, length of the geosynthetic reinforcement, and  
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Table. 1. Optimum Abutment Width to Height Ratios (B / H) for ϕ = 30 °– 

45° and kh =0–0.3 

 Abutment width to height ratio (B/H) for βsli≥3.0, βe≥3.0, 

βb≥3.0, and βsys≥3.0, 

kh  = °  = °  = °  = ° 

0.00 0.48 0.42 0.32 0.29 

0.05 0.54 0.48 0.38 0.34 

0.10 0.60 0.53 0.43 0.39 

0.15 0.67 0.60 0.48 0.44 

0.20 0.74 0.66 0.54 0.49 

0.25 0.80 0.72 0.60 0.54 

0.30 0.87 0.78 0.65 0.59 

characteristics of earthquake ground motions, such as shear wave and primary 

wave velocity. The study determined the optimal length of reinforcement 

necessary to maintain stability against these four modes of failure by targeting 

various component reliability indices. The comparison between the pseudo-

static and pseudo-dynamic methods was emphasized, highlighting that the 

pseudo-dynamic method yields more realistic design values for the length of 

geosynthetic reinforcement under earthquake conditions. This difference 

arises due to the limitations of pseudo-static analysis, such as neglecting the 

effects of time and phase differences resulting from finite shear wave and 

primary wave velocities, as well as the amplification of seismic accelerations. 

A representative result is depicted in Fig. 8. 

 
Fig.8. Comparison of reliability indices based on pseudo-static and pseudo-

dynamic methods. 
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Basha and Sivakumar Babu [40] proposed an approach for target component 

and system reliability-based design optimization to assess the safety of the 

internal seismic stability of geosynthetic-reinforced soil structures. The 

analysis considers three failure modes: tension failure of the bottom-most 

layer of reinforcement, pullout failure of the topmost layer of reinforcement, 

and total pullout failure of all reinforcement layers. The backfill properties and 

geometric and strength properties of the reinforcement are treated as random 

variables. The study determines the optimal number of reinforcement layers 

and pullout length necessary to maintain stability against tension failure, 

pullout failure, and total pullout failure for different coefficients of variation 

of the friction angle of the backfill, design strength of the reinforcement, and 

horizontal seismic acceleration coefficients, targeting various system 

reliability indices. The results offer guidelines for the total length of 

reinforcement required, considering the variability of backfill and seismic 

coefficients. An illustrative example is provided to explain the evaluation of 

reliability for internal stability of reinforced soil structures using the proposed 

approach. 

Mukherjee and Sivakumar Babu [42] conducted a probabilistic evaluation to 

analyse and design the uplift capacity of transmission tower foundations 

reinforced with a horizontal anchor, employing the radial basis function (RBF) 

based response surface method. The deterministic uplift capacities of 

horizontal anchors in both unreinforced and reinforced soils were determined 

through a finite difference numerical approach. Response surface models 

based on RBF were developed using the observed uplift resistance obtained 

from the deterministic numerical models. The foundation's reliability under 

uplift forces was evaluated through Monte Carlo simulation, considering 

uncertainties associated with soil and geogrid properties. The impact of safety 

factors on the failure probability of both unreinforced and reinforced 

foundations was demonstrated. Additionally, the variation of the pf with 

different CoV of input variables was explored. Among the parameters studied, 

the reinforcement stiffness emerged as the most influential, exerting a notable 

effect on the failure probability of the reinforced foundation. The study 

revealed a substantial enhancement in uplift capacity and a reduction in the pf 

of the foundation when a reinforced anchor was employed, underscoring the 

effectiveness of reinforcement on the anchor plate. Results indicated that, for 

an equivalent failure probability, reinforced anchors necessitate a shallower 

depth compared to unreinforced anchors. Figure 9 illustrates a representative 

outcome. This noteworthy reduction in pf can be attributed to the increased 

uplift capacity facilitated by geogrid reinforcement atop the anchor plate. 
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Fig. 9. Variation of pf with depth of embedment of anchor plate with anchor 

and geosynthetic reinforced anchor. 

Pramanik et al. [43] employed a surrogate model-based response surface 

method to anticipate the maximum displacement of the wall facing in 

geosynthetic-reinforced soil segmental walls. The multivariate adaptive 

regression splines were utilized for this prediction. Synthetic datasets were 

generated through Latin hypercube sampling for both training and testing 

purposes. For each input dataset, the finite difference software FLAC was used 

to assess the maximum wall-facing displacement. An expression, involving 

basis functions, was proposed to represent the maximum wall-facing 

displacement. The model's performance was evaluated by comparing the ratio 

of predicted and simulated maximum wall-facing displacement, and the results 

indicated satisfactory performance. The study highlighted the significant 

influence of the soil friction angle on predicting the maximum wall-facing 

displacement. A comparison with other soft computing techniques revealed 

that the proposed model demonstrated minimal errors. Furthermore, a 

probabilistic analysis was conducted concerning the normalized maximum 

wall-facing displacement. The outcomes demonstrated that the probabilistic 

prediction of the maximum wall-facing displacement using the proposed 

model fell within the specified limits. 

(v) Soil nailed walls 

Sivakumar Babu and Singh [44-48] conducted extensive research on the 

reliability analysis of soil-nailed walls, examining four failure modes under 

both static and seismic conditions. Key findings from the reliability-based 
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evaluation of a typical soil-nailed wall in the study include: (a) the variability 

of the angle of internal friction in the in-situ soil is more critical to all failure 

modes compared to unit weight and cohesion, (b) the correlation among in-

situ soil parameters significantly influences the reliability-based assessment of 

soil-nailed wall stability, (c) accounting for the vertical component of seismic 

loading leads to an overestimation of global stability and an underestimation 

of other failure modes, and (d) the susceptibility order of failure modes in 

seismic conditions is arranged as follows: Sliding > Tensile > Pullout > 

Global. Moreover, Sivakumar Babu and Singh [48] introduced a load and 

resistance factor design (LRFD) methodology for soil-nailed walls. The 

process for determining reliability-based load and resistance factors is outlined 

with respect to six limit strength states (i.e., failure modes) for a typical soil-

nailed wall. A comparison of the proposed methodology's load and resistance 

factors is made with those available in other soil nailing design codes. The 

study emphasizes the necessity for separate design factors (i.e., load and 

resistance factors) for each limit state. 

Sivakumar Babu and Singh [44] demonstrated the application of a 2k factorial 

design of experiment methodology for developing regression models through 

numerical simulations. These models predict the global stability and lateral 

displacement of soil nail walls. The proposed methodology offers a 

straightforward equation to estimate site-specific displacements, considering 

in-situ soil parameters from geotechnical investigations and the typical range 

of soil wall heights in local practice. Reliability analyses using regression 

models revealed that variations in in-situ soil properties, especially soil 

friction angle and unit weight, play a crucial role in soil nailing stability 

criteria. Additionally, using soil modulus Es as a design factor yielded a more 

appropriate displacement response. 

Pramanik and Sivakumar Babu [49] presented a load and resistance factor 

design (LRFD)-based reliability assessment of soil nail walls against facing 

failures. Analysis covered three facing failure modes: flexural, punching 

shear, and headed-stud tensile limit states. Both default and improved Federal 

Highway Administration (FHWA) load models, along with only the default 

FHWA resistance model, were considered for formulating limit states against 

facing failures. Variations in design parameters across the depth of the wall 

were examined for different target reliability indices and levels of variability 

in random input variables. Estimated load and resistance factors for different 

target reliability indices indicated that adopting the improved FHWA load 

model minimizes the maximum required design parameters. The study 

underscored the significant influence of input variable variability on load and 
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resistance factors, emphasizing the correlation coefficient between soil 

parameters as a key factor. 

(vi) Pavements 

Deepthi et al. [50,51] conducted a reliability analysis on a flexible pavement 

section, assessing fatigue cracking and subgrade rutting failure criteria using 

the first-order reliability method (FORM), second-order reliability method 

(SORM), and crude Monte Carlo simulation. In the sensitivity analysis, the 

surface layer thickness was identified as the most critical parameter 

influencing design reliability for both fatigue and rutting failure criteria [52]. 

The study emphasizes a significant dependence between the two failure 

modes, indicating a high probability of simultaneous occurrences compared to 

individual component failures. This highlights the importance of considering 

system reliability in pavement analysis. The research suggests that improving 

pavement performance should prioritize reducing the likelihood of 

simultaneous failure rather than focusing solely on the more critical failure 

mode. Additionally, the probability of simultaneous failures is observed to rise 

with slight increases in mean traffic loads, resulting in wider system reliability 

bounds. 

Deepthi and Sivakumar Babu [53] investigated the impact of spatial variability 

of resilient moduli. The study revealed that reducing the spatial correlation 

length led to a slight increase in the mean values of critical strains. This 

suggests that modeling pavement layers as homogeneous, without considering 

spatial variability, may underestimate critical strains. As the correlation length 

decreases, the probability density functions (PDFs) of critical strains become 

less spread out (ref. Fig. 10). This reduction in variance is attributed to the 

spatial averaging phenomenon. Moreover, higher variability in resilient 

moduli, indicated by a higher CoV, results in increased variability in pavement 

responses. 

 
Fig. 10. Effect of the Correlation length on the PDF of the Tensile strain 
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Deepthi and Sivakumar Babu [54] explored the impact of anisotropy within 

each pavement layer on the pavement responses, focusing on identifying the 

layer where introducing anisotropic characteristics has the most significant 

effect on critical strains. The findings indicate that anisotropy in the base layer 

has a notable and varied influence on critical strains. Specifically, the 

compressive strain tends to be substantially higher compared to the isotropic 

section (refer to Fig. 11), while the mean value of tensile strains decreases with 

the introduction of base-layer anisotropy (see Fig. 12). Additionally, 

anisotropy in the asphalt layer tends to decrease the critical tensile strain, with 

minimal impact on the critical compressive strain. 

 
Fig. 11. Effect of Anisotropy on the PDF of the Critical Tensile Strain 

 

 
Fig. 12. Effect of Anisotropy on the PDF of the Critical Compressive Strain 

Nevertheless, as compared to the spatially invariant section, the introduction 

of spatial variability and anisotropy in each of the layers sees a significant 

reduction in the design lives (Table 2). Not considering the spatial variability 

of the layers may, therefore, be one of the reasons for the premature failure of 

pavements observed worldwide. 
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Table 2. Influence of Spatial Variability on Design Life 

Design 

Life 

 

Spatially 

Invariant 

Isotropic 

 

Layer Anisotropy  

(ax=1m; ay=0.7) 

Asphalt  Base Subgrad

e 

Fatigue 

(msa) 

100 50 60 66 55 

Rutting 

(msa) 

450 300 300 250 320 

      

The inclusion of time-dependent factors, such as loading, external 

environmental conditions, damage, and maintenance practices, is crucial in 

understanding the causes of early failures in pavements. These factors 

contribute to the deterioration of structural resistance over the design life. 

Deepthi et al. [55] conducted a study focusing on the degradation of the 

surface layer modulus and its impact on pavement fatigue reliability. The 

decrease in modulus over time is modelled as a function of accumulated 

damage from repeated loading, as illustrated in Fig. 13. Figure 13a 

demonstrates the degradation effect under various traffic loadings, while 

Figure 13b highlights the difference in reliability when degradation is 

considered. The pavement section, designed for a 15-year period at an 80% 

reliability level, exhibits a pf of approximately 50% after 8 years and 75% after 

10 years when accounting for strength degradation. This highlights the 

importance of incorporating temporal characteristics of materials and loading 

in a time-dependent reliability analysis framework. 

 
Fig. 13. Time-variant reliability with asphalt modulus degradation for a) 

Different traffic loadings b) Effect of modulus degradation 

Deepthi and Sivakumar Babu [56] introduced a Reliability-Based Design 

Optimization (RBDO) approach to enhance the cost-effectiveness of flexible 
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pavements by adjusting combinations of design parameters, such as thickness 

and resilient moduli. The optimal solutions reveal that for pavement sections 

initially designed with thin asphalt layers and thicker granular base/sub-base 

layers, achieving the same target levels of reliability is possible by increasing 

the asphalt layer thickness, particularly when fatigue governs pavement failure 

(refer to Fig. 14). The augmented asphalt thickness is compensated by 

significant reductions in the base layer thickness, leading to overall thinner 

sections and lower construction costs. These findings are confirmed across 

different cost models, accounting for regional cost variations and resource 

availability. 

Deepthi and Sivakumar Babu [57] extended the study to System Reliability-

Based Design Optimization (SRBDO), aiming to address correlations between 

different pavement failure modes. This approach seeks to optimize pavement 

layer thicknesses and moduli, considering target reliability levels, traffic 

demand, and subgrade strength. It seamlessly integrates economic analysis 

with the Mechanistic-Empirical procedure within a system reliability 

framework. To enhance efficiency, two meta-modeling approaches were 

explored: the second-order adaptive Response Surface Model (RSM) and 

adaptive Polynomial-Chaos-based Kriging (PC-Kriging) meta-models. For 

the numerical examples, model uncertainty was observed to be around 1% for 

three-layer sections and below 2.5% for four-layer pavements. 

 
Fig. 14. Comparison of conventional and RBDO based pavement sections 

Deepthi et al. [58] introduced the 'Simplified Effective Random Dimension 

Quantile Value Method' (Simplified ERD-QVM) for the reliability-based 

design of flexible pavements. Current reliability-based approaches in 
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pavement design guides often rely on overall reliability factors, while 

simulation-based probabilistic techniques can be computationally intensive. 

The Simplified ERD-QVM bridges this gap, offering an efficient technique 

without surrogate models. Verified through Monte Carlo Simulations for 

various design scenarios, it provides significant computational time savings, 

utilizing familiar techniques for practitioners following the Mechanistic-

Empirical Pavement Design Guide. This comprehensive reliability analysis 

approach considers both design parameter and model uncertainty. The study 

highlights that the design traffic, computed to prevent exceeding the critical 

rut threshold, is lower when parametric uncertainties are considered (refer to 

Fig. 15). Essentially, failure probability is underestimated if both design 

parameter and model uncertainties are not considered in reliability-based 

design. The paper also outlines the methodology for integrating Simplified 

ERD-QVM with existing flexible pavement design codes. 

 
Fig 15. Simplified ERD-QVM for Rut Depth Prediction 

Kalore et al. [59] introduced a framework for assessing and mitigating risks 

associated with the drainage layer in a pavement subsurface drainage system. 

The framework suggests strategies to reduce risks and enhance system 

performance, acknowledging dependencies on inflow characteristics, 

aggregate gradation, unsaturated soil drainage properties, and pavement 

section geometry. The system's demand is defined as the required 

permeability, estimated based on total inflow and geometric section 

properties, while the discharge capacity relies on the hydraulic conductivity of 

the drainage layer. Capacity-demand models are employed to scrutinize the 

system's design, and a rational methodology accommodating variations in 

demand due to rainfall and capacity in the form of permeability is proposed. 

Recognizing the complexity and stochastic nature of determining exact 

demand and capacity, a more realistic evaluation involves considering 

uncertainty, and incorporating the pf and associated risks. The system's 

performance is analyzed by assessing the sensitivity of the design to various 

variables. Optimal enhancement of the system's performance can be achieved 
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by increasing layer thickness and/or employing coarser gradation with 

stabilization. Illustrative results are provided in Fig. 16 and Fig. 17. 

 
Fig. 16. Probability of failure versus saturated coefficient of permeability 

 
Fig. 17. Probability of failure versus drainage layer thickness 

(vii) Stability of slopes, landslides, and dams 

Soil slopes in general are unsaturated and typically exhibit negative pore 

pressure or suction for most of the time. The stability of slopes decreases as 

suction diminishes due to the infiltration of moisture. This reduction in 

stability, a time-dependent phenomenon, contributes to rainfall-induced 

landslides in the Himalayan region. Sivakumar Babu and Murthy [60] 

conducted a reliability analysis on a typical slope in a region prone to rainfall-

induced landslides. Their analysis effectively captures the slips occurring in 
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the area due to rainfall, highlighting that variations in suction and permeability 

govern landslide occurrences. 

Srivastava et al. [61] explored the impact of spatial variability in soil 

permeability on slope stability and seepage. They considered the permeability 

parameter as a spatially correlated log-normally distributed random field. 

Using Monte Carlo simulations for a 5.0 m high cohesive–frictional soil slope 

with a 30° incline, they conducted parametric studies. The studies included a 

range of CoV in permeability values (60 to 90%) and various correlation 

distances (0.5–15 m) (ref. Figs. 18 and 19). Their investigation focused on the 

effects of stochastic soil permeability on seepage flow statistics, strain and 

deformation patterns, and slope stability assessed in terms of the factor of 

safety (FS). The results indicated that mean seepage discharge tends to 

decrease as the CoV in permeability increases, and an increase in correlation 

distance leads to an increase in mean seepage discharge. Additionally, 

variability in permeability decreases the factor of safety, while an increase in 

correlation distance results in an increase in the factor of safety. Similar 

patterns were observed by Griffiths and Fenton (1993) on seepage beneath 

water-retaining structures founded on spatially random soil. 

 
Fig. 18 Effect of CoV of permeability on the a) estimated mean of total flow 

rate (q, m3/s) and b) estimated CoV of mean flow rate. 

Risk-based design procedures for dam safety analysis are gaining prominence 

(ICOLD [62]; USBR [63]). The Bhuj earthquake in 2001 led to the failure or 

severe damage of numerous earth dams in Gujarat, India. Dams in Zone V 

were redesigned for revised earthquake loading, prompting a re-evaluation 

using reliability analysis. Sivakumar Babu and Srivastava [64] presented 

reliability analyses of four rehabilitated earth dam sections (Chang, Tapar, 

Rudramata, and Kaswati) under pseudo-static loading conditions. Utilizing 

response surface methodology, first-order reliability method, and numerical 
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analysis, reliability index values were obtained and compared with a 

conventional factor of safety values. The impact of variability in soil shear 

strength parameters, horizontal seismic coefficient, and reservoir full-level 

location on stability assessment was discussed in a probabilistic framework. 

Comparisons with Monte Carlo simulations and limit equilibrium approach 

results indicated that the considered earth dam sections are reliable and 

expected to perform satisfactorily. 

 
Fig. 19 Influence of variable permeability on the stability of slope under 

steady seepage condition 

Ering and Sivakumar Babu [65] conducted a probabilistic back analysis of the 

Malin landslide, integrating flow and mechanical modelling to understand 

fluid-mechanical interactions in unsaturated soils. Results suggested that 

antecedent rainfall, intensity, and duration affect slope stability. Probabilistic 

back analysis based on Bayesian analysis considered uncertainties in soil 

parameters, pore pressures, field observations, and the method of analysis. The 

method identified a decrease in matric suction triggering landslide initiation, 

revealing a 100% decrease in matric suction along the slip circle and increased 

hydraulic conductivity as the main mechanisms. 

Incorporating spatial variability, Ering and Sivakumar Babu [66] performed a 

probabilistic back analysis for slope failure using Bayesian analysis and 

random field theory. The method efficiently back-analysed the slope failure, 

providing confidence in parameter values for post-failure slope design and 

highlighting the importance of considering spatial variability in avoiding 

uneconomical slope remediation design. 
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Table. 3 Posterior statistics of cohesion and friction angle for different 

correlation lengths.  

Autocorrelation 

length (m) 

Prior 

mean 

Posterior 

mean 

Prior 

variance 

Posterior 

variance 

1 36 34.34 51.84 48.9 

2 36 31.4 51.84 43.0 

5 36 26.72 51.84 28.28 

Characterization of critical rainfall is crucial for selecting suitable slope 

correction measures. Ering and Sivakumar Babu [67] introduced a method to 

identify critical rainfall thresholds, emphasizing the importance of 

incorporating relevant physical phenomena in the analysis. In a landslide-

prone area, FLAC was employed to perform infiltration analyses using FLaIR 

model-identified rainfall values, offering insights into landslide kinematics. 

The destabilizing impact of rainfall was quantified in terms of landslide 

acceleration. Notably, the 2012 landslide exhibited a substantial acceleration 

rate of 0.508 m/s², causing extensive damage compared to other events. 

In regions susceptible to both earthquakes and heavy rainfall, common slope 

stability analyses typically assess the effects of these hazards separately. 

However, to accurately gauge the threat posed by their potential interaction, it 

is imperative to consider multiple processes simultaneously. Sivakumar Babu 

and Ering [68] proposed a systematic methodology to predict landslide 

initiation under the combined influence of earthquakes and rainfall events. 

This probabilistic approach involves deterministic analyses in FLAC, 

encompassing seismic stability and infiltration analysis. Rainfall loads, treated 

as random variables, are incorporated using the Intensity-Duration-Frequency 

relationship (IDF). The study focuses on the Guwahati region, utilizing IDF 

curves specific to the area. 

Figure 20 illustrates the density function of slope displacement, considering 

the interplay between earthquake and rainfall loads. It is evident that rainfall 

infiltration modifies slope displacement, with the extent of modification 

contingent on the rainfall pattern. Rainfall pattern 1 (T = 5 years) induces 

minimal changes, whereas pattern 2 (T = 10 years) and pattern 3 (T = 20 years) 

exhibit substantial modifications in the density function. 

The failure probability attributed to earthquakes surpasses that of rainfall. As 

the return period increases, the pf due to rainfall also rises. Importantly, the 

conditional failure probability, considering the interaction between earthquake 

and rainfall events, exceeds the failure probability of individual events. This 

emphasizes the necessity of accounting for the potential interaction between 
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earthquake and rainfall events in landslide risk assessments to avoid 

underestimating the landslide risk. 

 

 
Fig.20 PDF of slope displacement due to earthquake load and combination 

of earthquake and rainfall 

Rana and Sivakumar Babu [69] proposed a methodology employing multi-

output least square support vector regression (MLS-SVR) to replicate a 

numerical model for slopes under precipitation at the Malin landslide site. This 

approach incorporates a multi-objective genetic algorithm and Bayesian 

analysis to update statistics of soil parameters based on observed slope data. 

Matric suction emerges as a significant factor influencing slope behavior 

under rainfall, and continuous updating of observations reduces uncertainties 

in soil parameters. Calculated safety factor values using updated parameters 

align with observed slope failures in the field. 

Rana et al. [70] introduced a probabilistic back analysis methodology to 

estimate uncertainties in soil parameters, considering observed slope 

responses under seismic loading. The method involves a support vector 

regression (SVR) model, generated from numerical simulations of slopes 

under seismic loading using FLAC 2D. Probabilistic back analysis using 

Markov Chain Monte Carlo (MCMC) simulation demonstrates that updated 
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soil parameters have less variability than prior distributions. Model 

uncertainty's impact on posterior statistics of soil parameters is investigated 

through a parametric study. 

To Address the impact of rainfall infiltration on the response of unsaturated 

embankments, Showkat et al. [71] implemented the Barcelona Basic Model 

(BBM) to simulate the effect of varying rainfall intensities. BBM accurately 

models the loss of suction upon saturation, resulting in larger deformations 

compared to the Mohr-Coulomb model. Reliability analysis highlights the 

importance of probabilistic assessments for slope stability, emphasizing 

suction and hydraulic conductivity as critical parameters for unsaturated soil 

slope embankments. 

Showkat and Sivakumar Babu [72] studied the introduction of geocomposites 

to prevent embankment failures by acting as drains. Numerical analyses, using 

both deterministic and probabilistic approaches, revealed that the 

geocomposite layer reduces surface displacements by serving as a capillary 

barrier and drainage layer. Probabilistic analysis, utilizing parameters such as 

hydraulic permeability and soil water characteristic curve (SWCC) as random 

variables, showed that embankments with geocomposites have lower 

probabilities of failure compared to those without, considering rainfall 

infiltration. This is illustrated in Fig. 21. 

 
Fig. 21 Variation of the probability of failure with CoVs of different 

parameters 
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(viii) Buried pipes 

Design methods and codes for flexible pipes, such as Spangler's formula for 

deflection and Luscher's buckling formula, are often semi-empirical and do 

not adequately consider the complex soil-pipe interaction, which is 

significantly influenced by material properties and soil constitutive behavior. 

Moser [73] highlighted that flexible steel pipes exhibit curvature reversal at 

20%, while buried polyvinyl chloride pipes show reversal at 30%. Moser [73] 

suggested reducing these values by a factor of 4 to determine allowable 

deflections. While adherence to these limits is practical, assessing the 

reliability associated with these limits through rational considerations is 

valuable. Sivakumar Babu and Rajaparthy [74] demonstrated that variations 

in design parameters, such as soil modulus and bulk density of the fill impact 

the performance of buried pipe system. The reliability index decreases with an 

increase in the CoV of soil modulus and bulk density, while it increases with 

an increase in the correlation coefficient between these variables. It is feasible 

to obtain a central factor of safety (CFS) value based on the target reliability 

and variations in the design parameters. The commonly used factor of safety 

of 4 in codes for deflection calculations appears to be conservative, as 

indicated by the results presented in Fig.22 concerning a typical buried pipe 

installation. 

 
Fig. 22 Variation of Central Factor of Safety (CFS) with CoV of deflection 

for 5%, 10%, and 15% allowable deflection. 
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Pipe failure manifests through three key indicators: 1) excessive deflection, 2) 

actual buckling pressure surpassing critical buckling pressure, and 3) elevated 

tensile stress resulting from over pressurization. Extensive research has delved 

into these failure modes, yielding closed-form solutions and finite element 

analysis outcomes documented in existing literature. Sivakumar Babu and 

Srivatsava [75] employed response surface methodology to establish 

approximate functional relationships for various limit states, drawing from 

both analytical solutions and numerical analysis results. Their reliability 

analysis unveiled insights, with a comparison of buried pipe-soil system 

reliability analysis results suggesting that a probabilistic approach, 

considering input parameter variability, enhances understanding. Notably, 

numerical analysis yielded higher reliability index values than those obtained 

from available analytical equations, challenging the conservatism of 

conventional approaches. 

(ix) Rock slopes and Tunnels  

Traditional approaches to reliability-based design typically prioritize selecting 

the least costly design that meets safety requirements. However, these designs 

can be sensitive to variations in input parameters (noise parameters) and may 

prove inadequate if the CoV is underestimated. In addressing this concern, 

Pandit and Sivakumar Babu [76] proposed a reliability-based robust design 

(RGD) for reinforcing jointed rock slopes, demonstrated through the 

reinforcement of rock slopes using end-anchored rock bolts. This approach 

ensures the selection of a cost-effective and safe design that minimizes the 

sensitivity of the probability of failure (pf) to noise parameters. The reliability-

based RGD approach involves evaluating pf for various designs considering 

different noise parameters. Due to the computational expense of finding pf for 

complex geotechnical structures, an augmented radial basis function-based 

response surface serves as a surrogate to the finite element model of the rock 

slope. This efficient response surface is then used with the minimum distance 

algorithm to obtain a cost-effective and robust design. A cost comparison 

between two robust designs for different target probabilities of failure 

illustrates the method's advantages. The simulation of field conditions for 

seismically induced slope failures incorporates model uncertainties, 

accounting for differences between simulated and observed slope behavior.  

Pandit [77] explored heterogeneity effects in rock masses using random field 

approaches characterized by the statistics/moments of rock mass properties 

and auto-correlation structure. The auto-correlation structure includes the 

correlation function and the scale of fluctuation (SOF) parameter. Realizations 

of isotropic and anisotropic random fields of the unconfined compressive 
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strength (UCS) of rock with different SOF values are presented. For example, 

with SOF = 2 m, UCS variation is correlated over short distances, resulting in 

a rough spatial distribution. In contrast, with SOF = 64 m, increased spatial 

correlation leads to a more uniform spatial distribution of UCS values. The 

study found that different failure mechanisms arise due to these variations in 

spatial correlation. For instance, a lower SOF (2 m) results in a tortuous and 

longer slip surface, yielding approximately similar factors of safety (FOS) 

values for different realizations. Conversely, a higher SOF (64 m) leads to a 

smoother slip surface, causing significant FOS variations (ref. Fig. 23). This 

change in mechanism results in lower pf for lower SOF (2 m) and higher pf for 

higher SOF (64 m). This observation is supported by the study of an 

anisotropic random field with SOF_x = 64 m and SOF_y = 4 m, which shows 

a relatively tortuous slip surface and lower pf (order of 10-5) compared to the 

random variable method (pf of the order of 10-4). 

 

Fig. 23. Random field realization and failure mechanism with SOF [x,y]: [2 

m,2 m] (top),     [64 m, 64 m] (middle) and [64 m, 4 m] (bottom) 
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Pandit and Sivakumar Babu [78] investigated the behavior of a horseshoe-

shaped tunnel excavated in weak rock mass through deterministic, random 

variable, and random field methodologies. The tunnel's performance in 

probabilistic analysis was evaluated by establishing three limit states: 

maintaining tunnel convergence below a safe threshold, ensuring proper 

embedding of rock bolts beyond the depth of yielded rock mass, and 

preventing the load induced on the liner support from exceeding its capacity. 

Both unsupported and supported tunnels were subjected to analysis using 

deterministic, random variable, and random field approaches. To discretize the 

random fields, the Fourier series method was applied, and Monte Carlo 

simulations were employed for random finite difference analysis. The study 

explored the influence of the scale of fluctuation (SOF), varying isotropic SOF 

for random fields, and horizontal and vertical SOF ratios for anisotropic 

random fields on the tunnel's performance and associated failure mechanisms. 

The findings highlighted the significant impact of SOF on output statistics and 

the pf for the defined limit states. Notably, it was observed that the random 

variable approach tended to underestimate the tunnel-support system's 

performance. However, in the absence of data required for random field 

characterization, this approach could be considered as conservative option. 

 
Fig. 24 (a) Localized yielding observed for SOF = 3 m (probability of 

occurrence of this type of yielding is high) (b) Yielding of rock mass over a 

large region for SOF = 60 m (probability of occurrence of this type of 

yielding is low) 
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The pf in tunnels due to insufficient bolt length (pf
B) shows the opposite trend 

compared to the rock slopes case, i.e., pf
B decreases with an increase in the 

SOF. Figure 24 explains the reasons behind this phenomenon and attributes it 

to localized yielding along the tunnel boundary for low SOF values, which is 

observed in several realizations increasing the pf
B. For higher SOF, global 

yielding takes place but in fewer realizations, leading to lower pf
B. Further 

studies on probabilistic analysis of tunnels considering uncertainty in peak and 

post-peak strength parameters and analysis of tunnel support requirements 

using deterministic and probabilistic approaches in average quality rock mass 

are conducted by Tiwari et al. [79,80]. 

(x) Landfill engineering 

 

Variabilities in material properties and model uncertainties significantly 

influence the design and analysis processes in landfill engineering. Municipal 

Solid Waste (MSW) introduces higher variability in geotechnical properties 

compared to geological materials, with influences stemming from the 

composition of MSW and time-dependent factors such as creep and 

biodegradation. Given the potential high costs and consequences associated 

with the failure of MSW slopes in landfills, stability analysis methods must 

account for this variability, making reliability analysis essential. Sivakumar 

Babu et al. [81] presented the outcomes of a probabilistic slope stability 

analysis conducted on a typical MSW landfill slope. The analyzed slope, with 

a height of 30 m and a slope ratio of 1V∶3H, considered the spatial variation 

of geotechnical properties within the MSW, comparing scenarios of a single 

depth layer to a multilayered depth configuration. Figure 25 depicts a typical 

section of the landfill, and Table 4 outlines the properties in each layer of 

MSW, taking into account various degrees of decomposition during the 

analysis. 

The published data on the geotechnical properties of MSW is used to define 

statistics of spatial variation of geotechnical parameters. The application of 

random field theory, coupled with the finite difference numerical code FLAC 

(Fast Lagrangian Analysis of Continua), generates a two-dimensional non-

Gaussian homogeneous random field through the Cholesky decomposition 

technique. Monte Carlo simulations are conducted to determine the stability 

statistics of the MSW landfill slope, specifically in terms of the factor of 

safety. This information is then employed to evaluate performance within a 

probabilistic framework. The findings are compared and discussed in relation 

to a conventional factor of safety approach, where geotechnical parameters are 

assumed to be uniformly constant. The overall results indicate a decrease in 

reliability indices with an increase in MSW property variation, emphasizing 
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the necessity to consider a multilayered MSW profile. These considerations 

resulted in reduced reliability indices compared to the results obtained by 

considering a single MSW layer for the entire depth. 

Table. 4 Properties in Each Layer of MSW with Degree of Decomposition  

Layer Depth to 

mid-

layer 

(m) 

Degree of 

decomposition 

(%) 

Unit 

weight 

(kN/m3) 

c (kPa)  () 

10 1.5 0 (fresh) 7.5 10.0 30.0 

9 4.5 20 8.7 19.2 28.3 

8 7.5 30 9.3 23.8 27.5 

7 10.5 40 10 28.3 26.6 

6 13.5 50 10.6 32.9 25.8 

5 16.5 60 11.2 37.5 25.0 

4 19.5 70 11.8 42.1 24.1 

3 22.5 80 12.4 46.7 23.3 

2 25.5 90 13.0 51.3 22.4 

1 28.5 100 13.6 55.8 21.6 

 

 
Fig. 25. Cross-sectional details of MSW landfill 

In the context of bioreactor landfills, leachate recirculation has become a 

crucial operational component due to its environmental benefits aligned with 

sustainability considerations. Reddy et al. [82] conducted an analysis of 

leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois. 

Using a two-phase flow model, the study assessed the influence of hydraulic 

conductivity variability on the effectiveness of the leachate recirculation 

system through reliability analysis. Numerical modeling, employing finite-

difference code, accounted for the spatial variation of hydraulic conductivity 

within the MSW, assuming an inhomogeneous and anisotropic waste 

condition for a realistic representation. The reliability analysis involved 
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dividing the landfill into 10 MSW layers with varying mean values of vertical 

and horizontal hydraulic conductivities, and parametric studies considered 

CoV’s ranging from 50% to 200%. Monte Carlo simulations provided 

statistical information on output parameters, including the wetted area of the 

MSW, maximum induced pore pressure, and leachate outflow. The results of 

the reliability analysis were instrumental in determining the influence of 

hydraulic conductivity on leachate recirculation effectiveness. The study 

identified two critical parameters defining the efficiency of the leachate 

recirculation system: i) the percentage area of influence and ii) the ratio of 

excess porewater pressure to total stress. Comparisons between deterministic 

cases, spatial variability modeling, and Monte Carlo simulations underscored 

the significant impact of spatial variation in hydraulic conductivity on various 

output parameters. These findings emphasize the importance of considering 

such variations when assessing the performance of bioreactor landfills. The 

reliability analysis results provided guidelines for enhancing the bioreactor 

landfill's performance, suggesting that the percentage area of influence of 

MSW should not be less than 60%, and the ratio of pore pressure to total stress 

can be considered as 0.52 for configuring the leachate recirculation system 

and determining injection rates. 

Sivakumar Babu et al. [83] introduced an innovative approach for utilizing 

landfill settlements to formulate closure plans based on the variability of 

design parameters, including compression index and two parameters, each 

associated with creep and biodegradation. Incorporating these five design 

variables into the constitutive model developed by Sivakumar Babu et al. [84], 

multi-linear equations were derived through response surface methodology 

(RSM). These equations, specific to boundary conditions, mean property 

values, and CoV, are invaluable for reliability calculations. While not easily 

generalized, these equations offer precision in predicting likely settlements 

and contribute to the development of landfill closure plans. The proposed 

methodology is illustrated with a typical example, showcasing the integration 

of variability in parameters and reliability analysis. The bioreactor concept, 

coupled with a gas collection system (GCS) for leachate recirculation, serves 

as an effective strategy to stabilize landfills and expedite settlements while 

harnessing gas for practical purposes. Despite numerous studies on bioreactors 

in the literature, the detailed performance of a bioreactor landfill with a GCS 

remains largely unexplored. Given the temporal and spatial variabilities in 

waste properties, accounting for these variations is crucial in GCS design. 

Parameswaran et al. [85] investigated the GCS performance for a prototype 

bioreactor using kriging surrogate models to accommodate waste property 

variability. Numerical models implemented through TOUGH3 EOS7CA 

three-dimensional simulations calibrated the kriging models. The radius of 
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influence (ROI), a critical parameter influencing GCS design, was estimated 

using methane generation rate (MGR), suction pressure (Sp), absolute 

permeability (k), and depth of the extraction well (D) as input parameters. 

Gas pressure distributions and the ROI inside the bioreactor were determined, 

considering input parameter variabilities through Monte Carlo simulations on 

the Kriging model. Initial observations of gas pressures within the prototype 

bioreactor, equipped with a single gas extraction well (GEW) system, raised 

safety concerns due to pressure values exceeding atmospheric levels. A 

sensitivity analysis emphasized the critical role of Sp and MGR in controlling 

the ROI. Consequently, the GCS design was optimized with two GEWs, and 

safety assessments varied only the critical parameters using another developed 

kriging model. Gas pressures within the safe range of atmospheric pressure 

confirmed the effectiveness of the design. A relation between Sp and MGR 

was established, enabling a 90% methane recovery at the GEWs. The pf for 

the prototype bioreactor, considering this developed relation, was estimated to 

be low (1.23 × 10−4), affirming the safety of the design. The methodology was 

extended to an actual landfill, enhancing comprehension of the design, as 

depicted in Fig. 26, showcasing the gas collection system (GCS) plan. 

 
Fig. 26 Plan showing the gas collection system 

To optimize gas extraction efficiency, designing a GCS involves modeling 

three-dimensional, multiphase, multicomponent gas migration in a landfill, 

considering spatio-temporal variabilities in geotechnical waste properties (i.e., 

heterogeneity) and uncertainties through stochastic models. Parameswaran et 

al. [86] proposed a method for calculating the radius of influence (ROI) of a 

gas extraction well (GEW) and designing a GCS for such landfills. The 
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method utilizes TOUGH simulator to model three-dimensional gas migration, 

and stochastic models are employed to estimate geotechnical properties for 

simulator calibration. Gas flows at specific spatiotemporal locations are 

determined, and Kriging is utilized to obtain gas flow values at remaining 

locations, facilitating ROI calculation. To ensure comprehensive gas 

collection across the landfill area, 36 gas extraction wells (GEWs) are 

strategically placed, adhering to established heuristic guidelines. This study 

validates the rationale behind these guidelines. Under heterogeneity, a passive 

GCS achieves a gas recovery efficiency of 0.82 and a gas pressure of 103 kPa. 

Figure 27 illustrates typical results. In contrast, a homogeneous design yields 

an efficiency of only 0.56, highlighting the significance of the heterogeneous 

model. With an active GCS, the efficiency improves to 0.86. The framework 

introduced in this study can enhance gas flow estimation in large landfills, 

facilitating the design of secure GCS in landfills to minimize methane 

emissions. 

 
Fig. 27. Probability density functions of ROI, Methane gas recovery, 

atmospheric gas flux and gas pressure inside landfill 
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(xi) Contaminant Transport in soils and rocks 

Santhosh and Sivakumar Babu [87] presented an assessment approach for 

evaluating the risk associated with a landfill liner system contributing to 

groundwater contamination due to chloride migration in proximity to a landfill 

site. Response Surface Methodology (RSM) was employed, taking into 

account the properties of Municipal Solid Waste (MSW), primary liner 

systems, and the attenuation layer for the analysis. The considered variables 

included initial chloride concentration, clay diffusion coefficient, liner soil 

porosity, aquifer porosity, and base outflow velocity. The study encompassed 

two cases: Case I incorporated different CoV values based on literature data, 

representing realistic scenarios, while Case II assumed a uniform CoV of 5% 

for all variables, a common practice in reliability calculations. This approach 

aimed to investigate the variation of regression coefficients in the two cases 

and their impact on reliability analysis results, as depicted in Fig. 28, showing 

a typical set of results. 

 
Fig. 28. Variation of β with the variation of initial chloride concentration and 

aquifer porosity 

It is crucial to highlight that liner porosity (n) emerges as the critical variable, 

followed by initial chloride concentration (C0), clay diffusion coefficient (D), 

aquifer porosity (nb), and base outflow velocity (Vb). Proper estimation of 

these parameters as variables is essential to accurately assess the risk of liner 

system failure and subsequent groundwater contamination. Additionally, the 

choice of permissible chloride concentration, which varies among different 

countries, can influence the reliability index. It's important to note that the 

developed response surface equations are valid only for the conditions 

considered in the analysis, and computational complexity may increase with 

an expanding number of variables. 

Santhosh et al. [88] presented a reliability-based approach to evaluate the 

performance of a landfill, considering uncertainties associated with the 

hydraulic properties of various system components. The model domain, 
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comprising a final cover system and a municipal solid waste (MSW) layer, is 

treated as an integrated system for analysis. Water balance is computed using 

the Hydrologic Evaluation of Landfill Performance (HELP) model to 

construct response surfaces for reliability analysis. The probability of leachate 

head accumulation at the bottom of the MSW layer above an allowable 

threshold serves as the criterion for reliability estimates in this study. The 

results are discussed in terms of the reliability index, and the impact of 

variations in (a) hydraulic characteristics of various layers and (b) defects and 

placement conditions of the geomembrane (GM) on system performance are 

explored. The analysis reveals that the hydraulic conductivity of the 

compacted clay layer (CCL) in the cover component, along with the porosity 

and saturated hydraulic conductivity of the MSW layer, are significant 

parameters influencing reliability. Furthermore, the study includes an 

exploration of the impact of model uncertainty and parametric analysis of 

significant variables, with the results presented in Fig. 29 outlining the 

approach followed for the analysis. 

 
Fig. 29. Flow chart of the analysis approach 
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Figure 30a shows a typical result. In the scenario with a well-functioning 

geomembrane (GM) (Fig. a), β values decrease with a leachate head increase. 

The acceptable value of β = 3 is attained at hac ≈ 37.5 cm, resulting in a 

corresponding pf for the integrated system of 0.13%. This value aligns 

reasonably closely with the permissible limit of 30 cm according to USEPA 

[89]. Turning to Fig. 30b, portraying the case of a defective GM, β values 

decrease linearly with increasing values from 0 to 70 cm. It is noteworthy that 

values are lower for uncorrelated random variables and higher for correlated 

random variables. For uncorrelated variables, the leachate head is 52 cm, while 

for correlated variables, it is 57 cm, both corresponding to β = 3. 

 

 
Fig. 30. Variation of β with accumulated leachate head for good GM and 

defective GM 

Additionally, this investigation explores the impact of the number of 

geomembrane (GM) defects and their placement conditions on reliability, 

accounting for correlated random variables. Various scenarios encompassing 

poor, good, and excellent placement conditions of the GM, coupled with 

varying numbers of defects, are examined. Each defect is assumed to be a 1 

cm2 hole in the GM. The outcomes of these scenarios are detailed in Fig. 31. 

The results reveal a significant reduction in β values with an increasing 

number of defects. For achieving β = 3, a maximum of 26 defects is allowable 

under poor placement conditions, and this threshold increases for cases with 

good and excellent placement conditions of the geomembrane (GM). 

Therefore, the number of permissible defects should be less than 26, 180, and 

450 in poor, good, and excellent placement conditions, respectively. The 

volume of leachate generation (expressed in m3/ha/yr) due to precipitation 

percolation through the defective GM is a critical consideration. Poor 

placement of the GM demonstrated a comparatively high leachate volume 

(4.64 × 103 m3/ha/yr), escalating to 10.2 × 103 m3/ha/yr with an increase in 
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the number of defects from 7 to 1000. Under good and excellent placement 

conditions, the GM generated leachate in the range of 3.57–6.92 × 103 

m3/ha/yr and 3.38–6.43 × 103 m3/ha/yr, respectively. Reliability analysis 

results for the integrated system indicate that a Compacted Clay Liner (CCL) 

overlain by a well-placed GM, especially in excellent contact, effectively 

reduces infiltration, leading to a more reliable system, a conclusion also 

supported by Rowe et al. [90]. 

 
Fig. 31. Variation of reliability index β with number of defects and 

placement condition of GM 

 

(xii) Transport of radionuclides 

The effectiveness of near-surface disposal facilities (NSDFs) in preventing 

the migration of radionuclides for low-level radioactive waste is contingent 

on the materials used in the barrier system construction, the geological 

formations surrounding the facility, and the type of waste containment 

system. Addressing the impact of these factors, Sujitha et al. [91] formulated 

a mathematical model to assess radionuclide migration using a contaminant 

transport model from NSDFs to the nearest geosphere, providing a 

comprehensive evaluation of the entire system's performance. The model 

considers scenarios during the dumping period, after the dumping period, and 

after the closure of the NSDF. The annual radiation dose values resulting 

from radionuclides through the drinking water pathway (for both single and 

multiple dump modes) are calculated using the model. A thorough analysis 

is conducted to estimate the radiation doses for the radionuclides 3H, 14C, 
59Ni, 99Tc, 129I, 237Np, and 239Pu in various disposal modes. The results, 

depicted in Fig. 32, illustrate concentration profiles extending over 
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significant temporal scales. Among the considered radionuclides, radioactive 

carbon (14C) exhibits the highest concentration in groundwater. To account 

for parameter variability in the model and quantify uncertainties arising from 

inherent variability, the presence of a heterogeneous medium, and variability 

associated with long-time scales of interest, a surrogate modelling technique 

known as collocation-based stochastic response surface method (CSRSM) is 

employed. This method approximates a complex analytical equation with a 

higher-order polynomial, utilizing polynomial chaos expansion (PCE). 

 

Fig. 32. Time history of radionuclide concentration in groundwater at 1.6 km 

parallel to flow 

For the probabilistic analysis of radioactive carbon (14C), groundwater 

velocity, thickness of the unsaturated zone, dispersivity, and distribution 

coefficient were treated as random variables. In all scenarios, a third-order 

polynomial was found to provide the best fit for the model, with a coefficient 

of determination (R2) reaching 0.99 for the third-order polynomial. 

Reliability analysis was conducted, and the pf for an annual radiation dose of 
14C exceeding the permissible limits was estimated across various scenarios 

and results are presented in Table 5. 

The results presented in Table 5 highlight the computational efficiency of the 

surrogate model, requiring only a few seconds to execute Monte Carlo 

simulations for reliability analysis. Additionally, it is noteworthy that the 

probability of system failure in all scenarios is very low, confirming the 

adequacy of the system. Sujitha et al. [92] developed a time-dependent 

reliability analysis for radionuclide migration in groundwater in a near-surface 
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disposal facility was performed using the enhanced Monte Carlo method. The 

Enhanced Monte Carlo (EMC) method was compared with the Subset 

Simulation (SS) method for estimating the first-passage probability, achieving 

computational times of 20 minutes and 42 minutes, respectively. Examining 

potential failure modes of a barrier system for a Near-Surface Disposal Facility 

(NSDF), Sujitha and Sivakumar Babu [93] identified failure of the top cover, 

failure of the waste container, degradation of the waste form, and failure of the 

bottom cover as independent failure events. The study emphasized the 

importance of considering system reliability in NSDF, revealing a high degree 

of dependence between failure modes and demonstrating the probability of 

simultaneous failures. The study recommended the use of optimization 

techniques for evaluating the pf, providing a better estimate, as validated by 

results obtained from Monte Carlo simulations. 

Table 5. Comparison of pf for different cases  

Dumping mode Probabi

lity of 

failure 

(pf) 

Relia

bility 

Index 

(β) 

Time for 

Computation 

using 

mathematical 

equation 

(seconds) 

Time for 

Computatio

n using 

CSRSM 

equation 

(seconds) 

Single-dump 1D 0.0075 3.432 2182.4 1.05 

Single-dump 2D 0.0083 3.77 2357.5 0.9 

Multiple-dump 1D 0.0085 3.387 2863.5 1.2 

Multiple-dump 2D 0.0026 3.807 3332.9 1.3 

 

Geetha Manjari and Sivakumar Babu [94] developed a three-dimensional 

groundwater contaminant transport model with a decaying source to determine 

radiation doses at different points of interest for short-lived (Strontium (90Sr), 

Caesium(137Cs)) and long-lived radionuclides (Carbon(14C) and Iodine(129I)). 

The study considered uncertainties in input parameters, propagating them using 

CSRSM technique based on Polynomial Chaos Expansion (PCE). The potential 

risk to a critical group through the drinking water pathway was calculated for 

all the radionuclides, with maximum values observed lower than the risk due to 

industrial accidents and natural catastrophes (1x10−3–1x10−4y−1). The 

developed code using the Python interface of FEFLOW made the model 

computationally efficient, and surrogate models were employed to reduce the 

computational effort, presenting concentration trends over time for 

radionuclides Carbon and Strontium at various observation points in Fig. 33. 
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Fig. 33. Concentration trends evolving over time for radionuclides (a) carbon 

and (b) Strontium at various observation points from the source 

Table 6. Probability of failure values for short-lived and long-lived 

radionuclides 

Sr. no. Radionuclide 

Permissible 

limit 

(mSv/yr) 

Probability 

of failure 

(pf) 

Computational 

time 

1 Caesium 0.4 2E-10 10 

2 Iodine 0.7 8E-11 12 

Hence, a more accurate understanding of the most influential parameters 

significantly reduces the model prediction uncertainty. Additionally, surrogate 

models generated from CSRSM were employed for reliability analysis. Using 

the Subset Simulation method, the study estimated the probability of the 

radiation dose exceeding the permissible threshold through the drinking water 

pathway, with the results presented in Table 6. 

The consistently low values of failure probability (as presented in Table 6) 

indicate that the system is secure from the risk associated with radiation 

through the drinking water pathway. Geetha Manjari and Sivakumar Babu 

[95] focused on the long-term safety of radioactive waste disposal facilities by 

developing probabilistic performance assessment models. The assessment 

included endpoints such as radiation dose and risk due to disposal practices. 

A two-dimensional radionuclide transport model with a decaying source was 

numerically modeled to compute the radiological impact caused by 

radionuclide iodine (129I) in the biosphere. The performance assessment model 

addressed inherent uncertainties and variabilities in the system, including 

inherent spatial variability in the geological medium. The study treated the 

hydraulic conductivity of the medium as a log-normal random field and 
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discretized it using Karhunen-Loeve (K-L) series expansion to account for 

inherent spatial variability. Contaminant concentration profiles were 

compared between stochastic spatial variable cases and deterministic cases, as 

illustrated in Fig. 34. In the deterministic case (homogeneous medium), the 

radionuclide showed a maximum concentration value of 8000 Bq/m3, whereas 

in the spatially variable case (heterogeneous medium), the maximum 

concentration value increased to almost 10000 Bq/m3 at its mean. The 

collection of concentration profiles obtained from the random field 

realizations, represented by grey lines, cover a range of possible concentration 

profiles. Ignoring the fluctuations in concentration trends (i.e., in the 

deterministic case) can lead to an underestimation or overestimation of the 

system's performance. 

 
Fig. 34. Concentration versus time for various cases 

Further, Fig. 35 displays contours of radionuclide concentration in the domain 

for both homogeneous and different spatially variable cases. The observation 

point is situated 80 meters from the source, marked as "×" in the figure. 

Concentration contours for a homogeneous medium are shown in Fig. 35(a), 

while various cases of spatially varying media are presented in Figs. 35(b–d). 

In Fig. 35(a), the contours are more spread, indicating greater dispersion and 

concentration at the endpoint compared to other cases [Figs. 35(b–d)]. These 

results suggest that the migration of radionuclides is faster in the homogeneous 

medium than in the spatially varying medium. This is because the flow of 

radionuclides is mainly driven by advection, and factors contributing to the 

advective process influence the final concentration at the endpoint. A higher 

hydraulic conductivity, indicative of high seepage velocity, increases the 

advective and dispersive transport processes. As the autocorrelation length 

increases (indicating a stronger correlation of hydraulic conductivity), the 
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mean rate of flow of the radionuclide in groundwater also increases. 

Therefore, in Figs. 35(b and c), the concentration front advances quicker in 

the latter case due to a higher correlation length. Additionally, a slight effect 

of the CoV on the concentration front was observed by comparing Figs. 35(c 

and d). These results emphasize the importance of considering spatial 

variability in the assessment of contaminant transport problems. 

 
Fig. 35. Concentration contours in (a) homogeneous medium; (b) spatially 

varying medium (llnx = 2 m; CoV = 50%); (c) spatially varying medium (llnx 

= 5 m; CoV = 50%); and (d) spatially varying medium (llnx = 5 m; CoV = 

10%) 

In addition, a reliability analysis was conducted to assess the impact of spatial 

variability in hydraulic conductivity on the performance of the disposal 

system. The probability of the radiation dose exceeding the design limit was 

estimated using the subset simulation method. The study also investigated the 

effect of autocorrelation length and the CoV of hydraulic conductivity on the 

pf and the migration behavior of radionuclides. Thus, the results of the 

reliability analysis for various cases are illustrated in Fig. 36. 

In the figure, it can be observed that the range of pf lies between 10-9 – 10-1. 

Trends in the data reveal that an increase in the CoV of the random field 

corresponds to an increase in the probability of system failure. Additionally, 

the pf rises with an increase in the auto-correlation length. Notably, increasing 

the auto-correlation length from 2 m to 5 m results in a reduction in pf by a 

factor of 104. Moreover, an increment in the auto-correlation distance from 5 

m to 10 m and beyond leads to a 10 times reduction in pf, although this 

reduction is not highly significant. The influence of auto-correlation length 

appears to be most prominent between 2 m and 5 m. In erratic (small 

correlation length) conditions, the scale of fluctuation in conductivity values 

increases along the length, causing slower radionuclide travel. Conversely, in 

smoother (large correlation length) conditions, the medium becomes less 
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heterogeneous, allowing the radionuclide to move faster. The pf values for 

homogeneous soil are higher than those for spatially varying soil. These results 

underscore the importance of a probabilistic framework that considers spatial 

variability in the geological medium for assessing the performance of 

radioactive waste disposal facilities. 

 

Fig. 36. Probability of failure versus correlation length for different cases 

Moving beyond soils, fractured rock masses represent natural geological 

formations consisting of a complex network of fractures and the intact rock 

matrix. Geetha Manjari and Sivakumar Babu [96] developed a two-

dimensional numerical model using the discrete fracture network approach to 

study groundwater flow and contaminant transport behavior in fractured rock 

masses. The model incorporates the effect of aperture variation along fractures 

as an additional feature. Simulating contaminant transport through a 

heterogeneous fracture network and intact rock matrix, the model computes 

contaminant concentration over spatial and temporal scales. The results of 

contaminant plume movement through a 0°-45°-90° fractured rock network is 

presented in Fig. 37. 

The contaminant plume exhibits distinct shapes along the x-direction and y-

direction, indicating that the complex network of fractures introduces 

significant heterogeneity, resulting in an irregular pathway for contaminant 

migration. Additionally, the fracture network and its connectivity serve as the 

primary pathway for the flow and movement of contaminants. Therefore, 

factors such as fracture geometry, fracture orientations, and local aperture 

variations in fractures significantly influence contaminant movement through 

fractured rock masses. Further, the probability of contaminant concentration 

exceeding the permissible limit is estimated using the subset simulation 
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method. The investigation into the influence of stochasticity in the fracture 

network reveals that each fracture arrangement (i.e., each realization) has a 

unique failure probability, indicating its significance on the contaminant 

transport process in the fractured rock mass. 

 

Fig. 37. Snippets of concentration plume evolving in time for 0° - 45° - 90° 

fracture set  

Moreover, pf values are estimated for various fracture sets, as presented in 

Table 7. The results indicate that for the 45° fracture network, pf is very high. 

This is attributed to the presence of a series of long, parallel fractures that 

conduct the flow of contaminants toward the endpoint, resulting in a high 

probability of contamination. In contrast, for two and three fracture sets, the 

range of pf values is relatively low. These findings highlight the significant 

influence of fracture geometry, including orientation and the number of sets, 

on the model's performance. 

Table 7. Probability of failure for different fracture sets (CoV of 40%) 

Fracture set 45° 45° - 90° 0° - 45° - 90° 0° - 90° 0° - 45° - 135° 

Probability of 

failure 
0.6 3.2 × 10-3 1.3 × 10-3 4.6 × 10-4 1.3 × 10-5 
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The findings highlight the importance of incorporating variations in aperture 

sizes and addressing their uncertainties when modeling contaminant transport 

in fractured rocks. The probabilistic framework established through this 

research offers valuable insights for engineering practitioners. It aids them in 

identifying critical areas that demand utmost attention when planning 

contaminant site remediation or designing waste disposal systems. This 

comprehensive approach acknowledges the inherent variability and 

uncertainty in the geological medium, contributing to more robust and reliable 

assessments in geoenvironmental engineering practices. 

Probabilistic nature of geomaterials 

The macro variability observed in geotechnical materials in practice can be 

attributed to the inherent micro-level variability at the grain size, 

encompassing different distributions of sizes, shapes, particle contacts, 

bonding, and contact medium. This micro-level variability is substantial and 

undergoes a significant reduction at the macro level. Parameters such as 

stiffness, strength, permeability, average void ratio, and other fundamental 

engineering properties exhibit variations at the macro level. This situation is 

distinct from materials like steel or concrete, which are treated as continua, 

with observed variabilities being considerably less compared to geomaterials. 

Therefore, incorporating probabilistic considerations in deterministic analyses 

proves highly beneficial. 

Kalore et al. [97] illustrated this concept in the context of granular filters. 

Granular filters must meet two crucial requirements: retention and hydraulic 

conductivity. Traditional design approaches rely on representative grain sizes 

to satisfy these requirements. Kalore et al. [97] proposed a probabilistic 

assessment criterion for retention requirements by considering grain size and 

constriction size as random variables. For hydraulic conductivity 

requirements, a probabilistic assessment criterion was defined based on the 

variability of hydraulic conductivity and a semi-analytical model for saturated 

hydraulic conductivity. The limit states for these criteria were established 

using published experimental data. 

The filter grain size distribution (GSD) is designed according to ICOLD [62] 

guidelines to match the averaged base soil GSD, shown in Fig. 38. The 

designed filter GSD for the averaged base soil GSD will meet the requirements 

for retention and hydraulic conductivity. However, the variability in the base 

soil GSD introduces uncertainty regarding effective filtration performance. 

The extremely fine base soil GSD is critical for retention, while the extremely 

coarse base soil GSD is critical for hydraulic conductivity function. The risk 

associated with the performance or failure of granular filters in filtration is 
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determined by the variability in the GSD of the base soil; higher variability 

corresponds to a greater risk of failure. It is important to note that the 

variability in base soil is inherent, whereas the variability in filter GSD is 

governed by the manufacturing process. This example illustrates the 

importance of considering soil GSD and its spatial variability within a risk 

assessment framework. 

 

Fig. 38 Example illustrating variability in the grain size distribution of base 

soil  

In another example, the consideration of the distribution of fibers in soils as 

random, following a uniform distribution in fiber-reinforced soil, provided 

valuable insights into stress diffusion due to the random reinforcement effect 

of fibers compared to preferred orientations (Sivakumar Babu et al. [98]). 

The application of Discrete Element Method (DEM) based approaches has 

proven valuable in addressing uncertainty in geotechnical studies. An example 

involves using discrete fracture networks (DFN) to model the geo-mechanical 

behavior of fractured rocks, as demonstrated by Pandit [78] (ref. Fig. 39). In 

DFN, fractures are treated as straight lines, and their attributes (orientation, 

trace length, etc.) are considered as random variables with specific probability 

distributions. To quantify the uncertainty induced solely by the fracture 

networks, Uniaxial Compressive Strength (UCS) tests on synthetic rock 

masses are conducted for 30 realizations of the stochastic DFN. The rock 

matrix, represented by an assembly of triangular elements, is calibrated at the 

mean value of the scale-corrected UCS value (i.e., 149.6 MPa). 
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Fig. 39 Model of stochastic Discrete Fracture Networks 

 

Fig. 40. (a) Simulating synthetic rock mass (b) Identification of 

representative elemental volume (REV) using mechanical indicators (c) 

Results of UCS simulation in UDEC on synthetic rock block of REV size 

i.e., 10 m  

For the estimation of Representative Elementary Volume (REV), synthetic 

rock masses were generated with increasing block sizes after the calibration 

of micro parameters of intact rock. Uniaxial Compressive Strength (UCS) tests 
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were conducted in UDEC to quantify the variability in strength and 

deformation of increasing block sizes, considering 30 random realizations of 

stochastic Discrete Fracture Networks. The results shown in Fig. 40, including 

peak strength and deformation modulus, indicate a decrease in their CoV 

values with an increase in the size of the synthetic rock block. For a block size 

of 10 m, the CoV goes below 20%, and therefore, 10 m is considered as the 

REV for the given rock mass conditions. Within the determined REV block 

size, variability of the intact rock material was introduced. Using the point 

estimate method, the uncertainty in rock mass strength and deformation was 

quantified. The results showed that the contribution of intact rock material 

variability in the uncertainty of rock mass strength and deformation is 

minimal, confirming that micro features can contribute to significant 

variability. Additionally, a correlation coefficient of 0.5 was found between 

uniaxial strength and deformation of the rock mass. 

The application of DEM and similar tools, including imaging techniques, to 

capture micro-variability is being developed to link micro features to 

responses at the macro level. However, addressing geotechnical challenges in 

practice remains an ongoing pursuit. The calculation of a factor of safety 

involves considerations and conservatism to reduce failure probability and 

costs. For example, if a design has a factor of safety equal to 3, its relevance 

may not be universally understood. However, expressing this information in 

probabilistic terms, such as stating a 35 percent chance that the levee will fail 

in a 50-year period, could enhance comprehension among a broader audience. 

Professor Milton Harr [99] made significant contributions to the probabilistic 

approach in examining the response of particulate media, emphasizing the 

importance of probabilistic thinking in addition to continuum approaches. He 

also authored a book on the applications of reliability in civil engineering 

[100]. In his Rankine lecture in 1977, De Mello [101] highlighted the need for 

the use of statistics, probability, and Bayesian thinking in dam engineering. 

Christian [102] and Baecher [103], in their recent Terzaghi lectures, 

eloquently emphasized the need for probabilistic considerations in 

geotechnical engineering. They discussed several case studies addressing 

large-scale engineering problems such as dams and natural hazard mitigation, 

presenting many ideas and suggestions for implementation in practice that the 

profession should embrace. 

Concluding Remarks 

Geological materials are highly variable compared to other civil engineering 

materials, and hence, the role of variability in material properties as well as 

loads need to be considered for rational design, analysis, and decision-making 
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in geotechnical engineering.  This contribution highlights a few applications 

of these methods. With ever-increasing methods of better understanding and 

analysis, including machine learning and artificial intelligence, the benefits of 

applications of these tools are humongous. Characterization of the variability 

of materials is essential to understand the design implications as well as 

behavioural responses of geotechnical structures.  Design consistency in 

treating both the loads and resistances from soils using probabilistic methods 

provides a rational way in design and practice. To understand, reduce, and 

consider uncertainties in design, proper material testing procedures following 

the physics of failure of geomaterials under variable loads are required. 

Sampling procedures and guidelines need to represent the design domain and 

properly represent geological features and stratification; an adequate number 

of sampling points are required. Methods of reliability analysis varying from 

simple approaches to complex models are available, and often consideration 

and use of means, variances, co-variances, and also performing even a simple 

reliability analysis is beneficial to justify design decisions, examine if the 

guidelines and codes are satisfactory, and modify them if required. A few 

examples are cited in this paper to give an insight into the applications and use 

of reliability analysis in practice. There is a vast scope for work towards a 

better understanding of design procedures, failure processes, and 

consequences of failures and provide sufficiently safe designs in geotechnical 

practice.  



53 
 

Acknowledgments 

I wish to thank the Indian Geotechnical Society (IGS), New Delhi for 

bestowing the honour of Society’s 45th Annual lecture and IGS Roorkee 

Chapter for providing the facilities to give the lecture during the Indian 

Geotechnical Conference at Roorkee. I wish to remember Prof. M. E. Harr of 

Purdue University, West Lafeyette, Indiana, USA for introducing me to the 

need for probabilistic thinking and analysis in geotechnical engineering during 

our discussions in 1996 while I was a visiting scholar at Purdue and was 

associated with Late Prof. G A Leonards, a strong supporter of IGS.  

I thank the Indian Institute of Science, Bangalore for providing an excellent 

eco system for nurturing the research and efficient support system.  I wish to 

thank my past and present colleagues in the Department of Civil Engineering 

and Centre for Sustainable Technologies for the support and valuable 

discussions. The work presented is based on the excellent work done in the 

area by my past and present students, Dr. Seshagiri Rao R, Prof. D S N Murty, 

Prof. A K Vasudevan, Prof. Sumanta Haldar, Prof. Munwar Basha, Prof. Vikas 

Pratap Singh, Prof. Amit Srivatsava, Dr. Sandeep K Chouskey, Dr. M D 

Deepthi, Dr. P Lakshmikanthan, Dr. Lekshmi Jaidev Nair, Dr. L G Santhosh, 

Dr. Pinom Ering, Dr. K Geetha Manjari, Prof. P Sughosh, Dr. Bharadwaj 

Pandit, Dr. Himansu Rana, Dr. K M Nazeeh, Dr. Shubham Arun Kalore, 

Sougata Mukherjee, Rakshanda Showkat, Prathima. P, Kalyani K, N. Anusree, 

and Prince Kumar. Thanks are due to M D Mukesh, Dr. Awdesh Kumar, Dr. 

Parameswaran, Dr. Rajarshi Pramanik, S Sujitha, Dr. Asha Nair and many 

others who were associated with me in research projects. The work received 

financial support from many funding agencies such as Council of Scientific & 

Industrial Research, (CSIR), Department of Science and Technology (DST), 

Ministry of Road Transport and Highways, Board of Research in Nuclear 

Sciences Government of India (BRNS), Public Works Department of 

Arunachal Pradesh, Ministry of Power, Science and Engineering Research 

Board (IMPRINT and NPDF schemes), and many others. I wish to specially 

thank Dr. Shubham Arun Kalore, Dr. Geetha Manjari, Dr. M D Deepthi and 

Prof. Munwar Basha for help in review and preparation of the manuscript. 

I thank Smt. K. Himabindu, my wife, children Deepti and Vennela for 

providing a wonderful atmosphere of happiness and joy at home which 

significantly contributed to my progress. 

  



54 
 

References 

1. Christian JT, Ladd CC, Baecher GB (1994) Reliability applied to slope 

stability analysis. Journal of Geotechnical Engineering, 120(12), 2180–

2207. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180) 

2. Vanmarcke EH (1977) Probabilistic modeling of soil profiles. Journal of 

Geotechnical Engineering, 103(11), 1227–1246. 

https://doi.org/10.1061/AJGEB6.0000517 

3. Fenton GA, Griffiths DV (1996) Statistics of free surface flow through a 

stochastic earth dam. Journal of Geotechnical Engineering, 122(6), 427-

436. 

4. Jaksa M, Goldsworthy J, Fenton G, Kaggwa G, Griffiths D, Kuo Y, 

Poulos H (2005) Towards reliable and effective site investigations. 

Geotechnique, 55(2), 109-121. 

5. US Army Corps of Engineers (USACE) (1997) Engineering and design: 

Introduction to probability and reliability methods for use in geotechnical 

engineering. ETL Rep. No. 1110-2-547. Washington, DC: Dept. of the 

Army. 

6. ISO (2015). International Organization for Standardization. ISO 

2394:2015 General principles on reliability for structures. ISO/TC 98/SC 

2. 4th ed. 

7. ISSMGE (International Society of Soil Mechanics and Geotechnical 

Engineering) (2021) TC304 Engineering practice of risk assessment & 

management. Accessed December 6, 2021. 

http://140.112.12.21/issmge/tc304.htm 

8. Phoon KK (2021) What Geotechnical Engineers Want to Know about 

Reliability. ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems, Part A: Civil Engineering. 

https://doi.org/10.1061/AJRUA6.RUENG-1002 

9. Haldar A, Mahadevan S (2000) Probability, Reliability and Statistical 

Methods in Engineering Design. John Wiley & Sons, Inc., New York, 

2000. 

10. Baecher GB, Christian JT (2005). Reliability and statistics in geotechnical 

engineering. John Wiley & Sons. 

11. Au SK, Beck JL (2001) Estimation of small failure probabilities in high 

dimensions by subset simulation. Probabilistic Engineering Mechanics, 

16(4), 263-277. 

12. Cadini F, Avram D, Pedroni N, Zio E (2012) Subset simulation of a 

reliability model for radioactive waste repository performance 

assessment. Reliability Engineering & System Safety, 100, 75-83. 

https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)
https://doi.org/10.1061/AJGEB6.0000517
http://140.112.12.21/issmge/tc304.htm
https://doi.org/10.1061/AJRUA6.RUENG-1002


55 
 

13. Nazeeh KM, Sivakumar Babu GL (2018) Reliability analysis of near-

surface disposal facility using subset simulation. Environmental 

Geotechnics, 6(4), 242-249. 

14. Manjari KG, Sivakumar Babu GL (2022) Reliability and sensitivity 

analyses of discrete fracture network based contaminant transport model 

in fractured rocks. Computers and Geotechnics, 145, 104674. 

15. Uzielli M, Vannucchi G, Phoon KK (2005) Random field characterization 

of stress-normalized cone penetration testing parameters. Geotechnique, 

55(1), 3-20. 

16. Murthy DSN, Sivakumar Babu GL (2008). Reliability analysis of 

allowable pressure of strip footing in cohesionless soil. Geotechnical 

Engineering Journal, South East Geotechnical Society, Bangkok, 39(2), 

77-85. 

17. Sivakumar Babu GL, Srivastava A, Murthy DSN (2006) Reliability 

analysis of bearing capacity of shallow foundation resting on cohesive 

soil. Canadian Geotechnical Journal, 43(2), 217-223. 

18. Sivakumar Babu GL, Murthy DSN (2007) Effect of spatial correlation of 

cone tip resistance on the bearing capacity of shallow foundations. 

Geotechnical and Geological Engineering Journal, 26, 37-46. 

19. Sivakumar Babu GL, Srivastava A (2007) Reliability analysis of 

allowable pressure on shallow foundation using response surface method. 

Computers and Geotechnics, 34(3), 187-194. 

20. Geetha Manjari K, Balaji Rao, Sivakumar Babu GL (2015) Stochastic 

model for settlement: footings on cohesionless soil. International Journal 

of Georisk - Assessment and Management of Risk for Engineered 

Systems and Geohazards, 8(4), 269-283. 

21. Haldar S, Sivakumar Babu GL (2012) Response of vertically loaded pile 

in clay: a probabilistic study. Geotechnical and Geological Engineering, 

30(1), 187-196. 

22. Haldar S, Sivakumar Babu GL (2009) Design of laterally loaded piles in 

clays based on cone penetration test data: a reliability-based approach. 

Geotechnique, 59, 1-14. 

23. Haldar S, Sivakumar Babu GL (2008) Reliability measures for pile 

foundations based on cone penetration data. Canadian Geotechnical 

Journal, 45, 1699-1714. 

24. Haldar S, Sivakumar Babu GL (2008) Probabilistic analysis of load-

settlement response from pile load tests. Georisk: Assessment and 

Management of Risk for Engineered Systems and Geohazards, 2(2), 79-

91. 

25. Haldar S, Sivakumar Babu GL (2008) Load resistance factor design 

(LRFD) of axially loaded pile based upon load test results. ASCE Journal 

of Geotechnical and Geoenvironmental Engineering, 134(8), 1106-1117. 



56 
 

26. Haldar S, Sivakumar Babu GL (2009) Probabilistic seismic design of pile 

foundations in non-liquefiable soil by response spectrum approach. 

Journal of Earthquake Engineering, 13, 737-757. 

27. Nazeeh KM, Sivakumar Babu GL (2019) Critical Appraisal of Codes for 

Foundation Design and Role of Reliability-Based Approach. Indian 

Geotechnical Journal, 49, 467-477. 

28. Fathima Sana VK, Nazeeh KM, Deepthi MD, Sivakumar Babu GL (2022) 

Reliability-based design optimization of shallow foundation on 

cohesionless soil based on surrogate-based numerical modeling. ASCE 

International Journal of Geomechanics, 22(2). 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002274 

29. Nazeeh KM, Sivakumar Babu GL (2022) Reliability-based design of 

geogrid reinforced soil foundation using kriging surrogates. 

Geosynthetics International, 1-14. 

30. Sivakumar Babu GL, Basha BM (2008). Optimum design of cantilever 

retaining walls using target reliability approach. ASCE Journal of 

International Journal of Geomechanics, 8(4), 240-252. 

31. Basha BM, Sivakumar Babu GL (2008) Target reliability-based design 

optimization of anchored cantilever sheet pile walls. Canadian 

Geotechnical Journal, 45, 535-545. 

32. Basha BM, Sivakumar Babu GL (2009) Seismic reliability assessment of 

external stability of reinforced soil walls using pseudo-dynamic method. 

Geosynthetics International, 16(3), 197-215. 

33. Basha BM, Sivakumar Babu GL (2010) Reliability assessment of internal 

stability of reinforced soil structures: a pseudo-dynamic approach. Soil 

Dynamics and Earthquake Engineering, 30(5), 336-353. 

34. Basha BM, Sivakumar Babu GL (2010) Load and resistance factor design 

(LRFD) approach for the reliability-based seismic design of bridge 

abutments. Georisk: Assessment and Management of Risk for Engineered 

Systems and Geohazards, 4(3), 127-139. 

35. Basha BM, Sivakumar Babu GL (2010) Optimum design for external 

seismic stability of geosynthetic reinforced soil walls: a reliability-based 

approach. Journal of Geotechnical and Geoenvironmental Engineering 

ASCE, 136(6), 797-812. 

36. Basha BM, Sivakumar Babu GL (2010) Optimum design of bridge 

abutments under high seismic loading using the modified pseudo-static 

method. Journal Earthquake Engineering, Taylor & Francis, 14(6), 874-

897. 

37. Basha BM, Sivakumar Babu GL (2010) Optimum design of bridge 

abutments under seismic conditions: a reliability-based approach. Journal 

Bridge Engineering ASCE, 15(2), 183-195. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0002274


57 
 

38. Basha BM, Sivakumar Babu GL (2011) Reliability-based earthquake-

resistant design for the internal stability of reinforced soil structures. 

Geotechnical and Geological Engineering, 29(5), 803-820. 

39. Basha BM, Sivakumar Babu GL (2011) Seismic reliability assessment of 

internal stability of reinforced soil walls using the pseudo-dynamic 

method. Geosynthetics International, 18(5), 221-241. 

40. Basha BM, Sivakumar Babu GL (2012) Target reliability-based 

optimization for internal seismic stability of reinforced soil structures. 

Geotechnique, 62(1), 55-68. 

41. Basha BM, Sivakumar Babu GL (2014) Reliability-based load and 

resistance factor design approach for external seismic stability of 

reinforced soil walls. Soil Dynamics and Earthquake Engineering, 60, 8-

21. 

42. Mukherjee S, Sivakumar Babu GL (2023) Probabilistic Evaluation of the 

Uplift Capacity of Transmission Tower Foundations Using Reinforced 

Anchors. International Journal of Geomechanics, 23(11), 04023203. 

43. Pramanik R, Mukherjee S, Sivakumar Babu GL (2022) Deterministic and 

probabilistic prediction of the maximum wall facing displacement of 

geosynthetic-reinforced soil segmental walls using multivariate adaptive 

regression splines. Transportation Geotechnics, 36, 100816. 

https://doi.org/10.1016/J.Trgeo.2022.100816 

44. Sivakumar Babu GL, Vikas Pratap Singh (2009) Deformation and 

stability regression models for soil nailing. Proceedings of the Institution 

of Civil Engineers, Journal of Geotechnical Engineering, 162, 1-11. 

45. Sivakumar Babu GL, Vikas Pratap Singh (2009) Reliability analysis of 

soil nail walls. Journal of Georisk: Assessment and Management of Risk 

for Engineered Systems and Geohazards, 3(1), 44-54. 

46. Sivakumar Babu GL, Vikas Pratap Singh (2009) Reliability-based study 

on the seismic stability of soil nail walls. Journal Of South East 

Geotechnical Society, Bangkok, 40(4), 237-246. 

47. Sivakumar Babu GL, Vikas Pratap Singh (2010) Reliability analyses of a 

prototype soil nail wall using regression models. Geomechanics and 

Engineering, An International Journal, 2(2), 71-88. 

48. Sivakumar Babu GL, Vikas Pratap Singh (2011) Reliability-based load 

and resistance factors for soil nail walls. Canadian Geotechnical Journal, 

48(6), 915-930. 

49. Pramanik R, Sivakumar Babu GL (2023) Reliability-Based Load and 

Resistance Factors for Soil Nail Walls Against Facing Failures. 

International Journal of Geosynthetics and Ground Engineering, 9(3), 27. 

50. Deepthi MD, Sivakumar Babu GL (2013) A methodology for pavement 

design evaluation and back analysis using Markov chain Monte Carlo 

simulation. Journal of Transportation Engineering, ASCE, 139(1), 65-74. 

https://doi.org/10.1016/J.Trgeo.2022.100816


58 
 

51. Deepthi MD, Ravi P, Sivakumar Babu GL (2013) System reliability 

analysis of flexible pavements. ASCE Journal of Transportation 

Engineering, 139(10), 1001-1009. 

52. Deepthi MD, Sivakumar Babu GL (2016) Methodology for global 

sensitivity analysis of flexible pavements in a Bayesian back-analysis 

framework. ASCE-ASME Journal of Risk Uncertainty Eng. Syst., Part A: 

Civ. Eng., 10.1061/AJRUa6.0000865, 04016002. 

53. Deepthi MD, Sivakumar Babu GL (2014) Influence of spatial variability 

on pavement responses using Latin hypercube sampling on 2D random 

fields. ASCE Journal of Materials. Eng J. Mater. Civ. Eng., 2014, 26(11), 

04014083. 

54. Deepthi MD, Sivakumar Babu GL (2016) Influence of anisotropy on 

pavement responses using adaptive sparse polynomial chaos expansion. 

ASCE Journal of Mater. Civ. Eng., 2016, 28(1), 04015061. 

55. Deepthi MD, Sivakumar Babu GL, Lekshmi S (2015) Time-Dependent 

Reliability Analysis of Pavement Structures under Fatigue Loading. 

Geotechnical Safety and Risk V; IOS Press: Amsterdam, The Netherlands 

(2015), 358-363. 

56. Deepthi MD, Sivakumar Babu GL (2020) Reliability-based design 

optimization of flexible pavements using kriging models. Journal of 

Transportation Engineering, Part B: Pavements, 147(3), 04021046. 

57. Deepthi MD, and Sivakumar Babu GL (2023) System reliability-based 

design optimization of flexible pavements using adaptive meta-modelling 

techniques. Construction and Building Materials, 367, 130351. 

58. Deepthi MD, Nazeeh KM, Sivakumar Babu GL (2023) Reliability 

analysis of flexible based on the quantile-value method. International 

Journal of Pavement Engineering, 24(1), 2241109, doi: 

10.1080/10298436.2023.2241109. 

59. Kalore SA, Sivakumar Babu GL, Mallick RB (2019) Risk analysis of 

permeable layer in pavement subsurface drainage system. Pavements J. 

Transp. Eng., 145(3), 04019028. 

60. Sivakumar Babu GL, Murthy DSN (2005) Reliability analysis of 

unsaturated slopes. Journal of Geotechnical and Geoenvironmental 

Engineering, 131(11), 1423-1429. 

61. Srivastava A, Sivakumar Babu GL, Sumanta Haldar (2010) Influence of 

spatial variability of permeability property on steady state seepage flow 

and slope stability analysis. Engineering Geology, 110(3-4), 93-101. 

62. ICOLD (International Commission on Large Dams) (1999) Paris: 

ICOLD. 

63. USBR (United States Bureau of Reclamation) (2011) Embankment 

Dams. Design Standards. No. 13, chapter 5, revision 9. 



59 
 

64. Sivakumar Babu GL, Srivastava A (2010) Reliability analysis of earth 

dams. Journal Of Geotechnical and Geoenvironmental Engineering 

ASCE, 136(7), 995-998. 

65. Ering P, Sivakumar Babu GL (2016) Probabilistic back analysis of 

rainfall-induced landslide‐ A case study of Malin landslide, India. 

Engineering Geology, 208, 154–164. 

66. Ering P, Sivakumar Babu GL (2016). A Bayesian framework for updating 

model parameters while considering spatial variability. Georisk: 

Assessment and Management of Risk for Engineered Systems and 

Geohazards. doi: 10.1080/17499518.2016.1255760. 

67. Ering P, Sivakumar Babu GL (2020) Characterization of critical rainfall 

for slopes prone to rainfall-induced landslides. ASCE Nat. Hazards Rev., 

21(3), 06020003. 

68. Sivakumar Babu GL, Ering P (2017) Integrating Rainfall Load into 

Remedial Design of Slopes Affected by Landslides, Geotechnics for 

Natural Disaster Mitigation and Management, 67–74. 

69. Rana H, Sivakumar Babu GL (2022) Probabilistic back analysis for 

rainfall-induced slope failure using MLS-SVR and Bayesian analysis. 

Georisk: Assessment and Management of Risk for Engineered Systems 

and Geohazards, 1-14. 

70. Rana H, Pandit B, Sivakumar Babu GL (2023) Estimation of 

Uncertainties in Soil Using MCMC Simulation and Effect of Model 

Uncertainty. Geotechnical and Geological Engineering, 1-15. 

71. Showkat R, Mohammadi H, Sivakumar Babu GL (2022) Effect of rainfall 

infiltration on the stability of compacted embankments. International 

Journal of Geomechanics, 22(7). doi: 10.1061/(ASCE)GM.1943-

5622.0002425. 

72. Showkat R, Sivakumar Babu GL (2023) Reliability analysis of 

unsaturated embankment considering the effect of geocomposite under 

infiltration. Geosynthetics International, 

https://doi.org/10.1680/jgein.22.00268. 

73. Moser A (1990) Buried Pipe Design, McGraw Hill Professional. 

74. Sivakumar Babu GL, Rajaparthy RS (2005) Reliability measures for 

buried flexible pipes, Canadian Geotechnical Journal, 42(2), 541-549. 

75. Sivakumar Babu GL, Srivastava A (2010) Reliability analysis of buried 

flexible pipe-soil systems. Journal of Pipeline Systems Engineering and 

Practice, ASCE, 1(1), 33-41. 

76. Pandit B, Sivakumar Babu GL (2017) Reliability based robust design for 

reinforcement of jointed rock slope. Georisk: Assessment and 

Management of Risk for Engineered Systems and Geohazards, 12(2), 

152–168. 

https://doi.org/10.1680/jgein.22.00268


60 
 

77. Pandit B (2021) Reliability based analysis and design of slopes and 

tunnels in rock mass, Ph.D. thesis, Indian Institute of Science, Bangalore. 

78. Pandit B, Sivakumar Babu GL (2021) Probabilistic stability assessment 

of tunnel-support system considering spatial variability in weak rock 

mass. Computers and Geotechnics, 137; 104242. 

79. Tiwari G, Pandit B, Madhavi LG, Sivakumar Babu GL (2017) 

Probabilistic analysis of tunnels considering uncertainty in peak and post-

peak strength parameters. Tunneling and Underground Space 

Technology, 70, 375-387.  

80. Tiwari G, Pandit B, Madhavi LG, Sivakumar Babu GL (2018) Analysis 

of tunnel support requirements using deterministic and probabilistic 

approaches in average quality rock mass. International Journal of 

Geomechanics, 18(4), 04018017.  

81. Sivakumar Babu GL, Reddy KR, Srivastava A (2014) Influence of 

spatially variable geotechnical properties of MSW on the stability of 

landfill slopes. Journal of Hazardous, Toxic, And Radioactive Waste, 

18(1), 27–37. 

82. Reddy KR, Kulkarni HS, Srivastava A, Sivakumar Babu GL (2013). 

Influence of spatial variation of hydraulic conductivity of municipal solid 

waste on the performance of bioreactor landfill. Journal of Geotechnical 

and Geoenvironmental Engineering, 139(11), 1968-1972. 

83. Sivakumar Babu GL, Chouskey SK, Reddy KR (2013) Approach for the 

use of MSW settlement predictions in the assessment of landfill capacity 

based on reliability analysis. Waste Management, 33, 2029-2034. 

84. Sivakumar Babu GL, Reddy KR, Chouksey SK (2010) Constitutive 

model for municipal solid waste incorporating mechanical creep and 

biodegradation-induced compression. Waste Management Journal, 30(1), 

11 To 22. 

85. Parameswaran TG, Nazeeh KM, Deekshith PK, Sivakumar Babu GL 

(2022) Probabilistic Design of Gas Collection Systems for a Prototype 

Bioreactor. ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems, Part A: Civil Engineering, 8(4), 04022053. 

86. Parameswaran T, Nazeeh KM, Deekshith PK, Sivakumar Babu GL, 

Chamindu DTKK (2023). Gas collection system design for a landfill via 

three-dimensional stochastic waste heterogeneity models and kriging. 

Journal of Environmental Chemical Engineering, 11, 110563. 

87. Santhosh LG, Sivakumar Babu GL (2014) Reliability of the liner system 

using the response surface method. Environmental Geotechnics, 1(2), 71-

80. 

88. Santhosh LG, Lakshmikanthan P, Sivakumar Babu GL (2017) 

Reliability-based approach for the prediction of leachate head in MSW 



61 
 

landfills. International Journal of Geosynthetics and Ground Engineering, 

3(4). https://doi.org/10.1007/S40891-016-0080-4. 

89. USEPA (1993) Solid waste disposal facility criteria, subpart D-design 

criteria. U.S. Environmental Protection Agency, Washington, EPA530-

R-93-017, 40 CFR § 258.40. 

90. Rowe RK, Chappel MJ, Brachman RWI, Take WA (2012) Field study of 

wrinkles in a geomembrane at a composite liner test site. Canadian 

Geotech J, 49(10), 1196–1211. 

91. Sujitha S, Manjari GK, Sampurna Datta, Sivakumar Babu GL (2015) Risk 

and reliability analysis of multi-barrier system for near-surface disposal 

facilities. ASCE J. Journal of Hazardous, Toxic, And Radioactive Waste, 

20(2). https://doi.org/10.1061/HZ.2153-5515.0000284, 04015014. 

92. Sujitha S, Deepthi DM, Sivakumar Babu GL (2016) Time-dependent 

reliability analysis for radionuclide migration in groundwater in near-

surface disposal facility using enhanced Monte Carlo method. Georisk: 

Assessment and Management of Risk for Engineered Systems and 

Geohazards. https://doi.org/10.1080/17499518.2016.1229867. 

93. Sujitha S, Sivakumar Babu GL (2017). System reliability analysis for 

near-surface radioactive waste disposal facilities. Georisk: Assessment 

and Management of Risk for Engineered Systems and Geohazards, 11(4), 

2017. 

94. Geetha Manjari K, Sivakumar Babu GL (2017) Probabilistic analysis of 

groundwater and radionuclide transport model from near surface disposal 

facilities. Georisk: Assessment and Management of Risk for Engineered 

Systems and Geohazards, 12(1), 60-73. 

95. Geetha Manjari K, Sivakumar Babu GL (2021) Probabilistic analysis of 

radionuclide transport for near-surface disposal facilities in spatially 

varying soils. Journal of Hazardous, Toxic, and Radioactive Waste, 25(1), 

04020059. 

96. Geetha Manjari K, Sivakumar Babu GL (2022) Reliability and sensitivity 

analyses of discrete fracture network-based contaminant transport model 

in fractured rocks. Computers and Geotechnics, 145, 104674. 

97. Kalore SA, Sivakumar Babu GL, Mahajan R (2021) Probabilistic design 

framework for granular filters. Doi: 10.1061/(Asce)Gt.1943-

5606.0002674.  

98. Sivakumar Babu GL, Vasudevan AK, Haldar S (2008) Numerical 

simulation of fiber-reinforced sand behavior, Geotextiles and 

Geomembranes, 26(2), 181-188. 

99. Harr M (1977) Mechanics of particulate media: A probabilistic approach, 

McGraw-Hill. 

100. Harr M (1987) Reliability-Based Design in Civil Engineering. McGraw-

Hill Book Company. 

https://doi.org/10.1007/S40891-016-0080-4
https://doi.org/10.1080/17499518.2016.1229867


62 
 

101. De Mello VFB (1977). Reflections on design decisions of practical 

significance to embankment dams, 17th Rankine Lecture. Geotéchnique, 

27(3), 281–355. https://doi.org/10.1680/geot.1977.27.3.281.   

102. Christian JT (2004) Geotechnical engineering reliability: How well do we 

know what we are doing?. J. Geotech. Geoenviron. Eng., 130(10), 985–

1003. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(985). 

103.  Gregory BB (2021) Geotechnical Systems, Uncertainty, and Risk. 
January 2023Journal of Geotechnical and Geoenvironmental Engineering 

149(1):03023001, DOI:10.1061/JGGEFK.GTENG-10201

https://doi.org/10.1680/geot.1977.27.3.281
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(985)


 
 

 

 

 


